

Dover Corporation

2025 CDP Corporate Questionnaire 2025

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Read full terms of disclosure

.

Contents

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

✓ USD

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

☑ Publicly traded organization

(1.3.3) Description of organization

Dover Corporation is a diversified global manufacturer and solutions provider delivering innovative equipment and components, consumable supplies, aftermarket parts, software and digital solutions and support services through five operating segments: Engineered Products, Clean Energy & Fueling, Imaging & Identification, Pumps & Process Solutions, and Climate & Sustainability Technologies. Dover is headquartered in Downers Grove, Illinois and currently employs approximately 24,000 people worldwide. Dover's five segments are structured around businesses with similar business models, go-to-market strategies, product categories, and manufacturing practices. This structure increases management efficiency and better aligns Dover's operations with its strategic initiatives and capital allocation priorities, and provides greater transparency about performance to external stakeholders. Dover's five operating and reportable segments are as follows: • Our Engineered Products segment provides a wide range of equipment, components, software, solutions and services to the vehicle aftermarket, aerospace and defense, industrial winch and hoist, and fluid dispensing end-markets. • Our Clean Energy & Fueling segment provides components, equipment, software solutions and services enabling safe and reliable storage, transport and dispensing of traditional and clean fuels (including liquefied natural gas, hydrogen, and electric vehicle charging), cryogenic gases, and other hazardous substances along the supply chain, and safe and efficient operation of convenience retail, retail fueling and vehicle wash establishments. • Our Imaging & Identification segment supplies precision marking and coding, product traceability, brand protection and digital textile printing equipment, as well as related consumables, software and services to the global packaged and consumer goods, pharmaceutical, industrial manufacturing, textile and other end-markets. • Our Pumps & Process Solutions segment manufactures specialty pumps and flow meters, fluid t

components, instruments and digital controls for rotating and reciprocating machines, and polymer processing equipment, serving single-use biopharmaceutical production, diversified industrial manufacturing applications, chemical production, plastics and polymer processing, midstream and downstream oil and gas, clean energy markets, thermal management, food and beverage, semiconductor production and medical applications and other end-markets. • Our Climate & Sustainability Technologies segment is a provider of innovative and energy-efficient equipment, components, solutions, services and parts for the commercial refrigeration, heating and cooling and beverage can-making equipment end-markets.

[Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

End date of reporting year	Alignment of this reporting period with your financial reporting period	Indicate if you are providing emissions data for past reporting years
12/31/2024	Select from: ✓ Yes	Select from: ✓ No

[Fixed row]

(1.4.1) What is your organization's annual revenue for the reporting period?

7745909000.00

(1.5) Provide details on your reporting boundary.

Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?
Select from:

	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?
	✓ Yes
[Fixed row]	
(1.6) Does your organization have an ISIN code or anot	her unique identifier (e.g., Ticker, CUSIP, etc.)?

ISIN code - bond

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

ISIN code - equity

(1.6.1) Does your organization use this unique identifier?

Select from:

Yes

(1.6.2) Provide your unique identifier

US2600031080

CUSIP number

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ Yes
(1.6.2) Provide your unique identifier
260003108
Ticker symbol
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
DOV
SEDOL code
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ No
LEI number
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ No
D-U-N-S number
(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

Other unique identifier

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

[Add row]

(1.7) Select the countries/areas in which you operate.

Select all that apply

✓ China
✓ Brazil

✓ India

✓ Italy

✓ Japan
✓ Mexico

✓ Spain
✓ Norway

✓ Poland
✓ Czechia

✓ Sweden

✓ Turkey
✓ Finland

✓ Austria
✓ Germany

✓ Belgium
✓ Romania

✓ Malaysia ✓ Singapore

✓ Malaysia✓ Singapore✓ Slovakia✓ Luxembourg

Siovakia

✓ Thailand✓ Netherlands✓ Argentina✓ Philippines

✓ Australia ✓ Switzerland

✓ Taiwan, China
✓ United States of America

✓ Republic of Korea
✓ United Kingdom of Great Britain and Northern Ireland

- ✓ Dominican Republic
- ✓ Russian Federation
- ✓ United Arab Emirates

(1.8) Are you able to provide geolocation data for your facilities?

Are you able to provide geolocation data for your facilities?	Comment
Select from: ✓ No, this is confidential data	This is confidential data

[Fixed row]

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

- ✓ Upstream value chain
- ✓ Downstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

✓ Tier 4+ suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

✓ All supplier tiers known have been mapped

(1.24.7) Description of mapping process and coverage

We review internal and external documents and also hold conversations with various members of our business (e.g., supply chain, operations and product teams) to identify the key elements of our value chain. Our mapping begins far upstream at the mine site, through operations across our segments, to the users of the products, the way they are used, and end of life. Following this mapping, we analyzed our potentially significant impacts and dependencies for each aspect of the value chain. For example, our impact on worker health and safety is prevalent across all of our business lines, while our impact on water resources is only prevalent in certain product lines of certain segments. Our mapping covers not just direct operations but also our business relationships, detailing the impact on stakeholders like suppliers, partners, customers, and communities.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

(1.24.1.1) Plastics mapping

Select from:

✓ No, and we do not plan to within the next two years

(1.24.1.5) Primary reason for not mapping plastics in your value chain

Select from:

✓ Judged to be unimportant or not relevant

(1.24.1.6) Explain why your organization has not mapped plastics in your value chain

Our recent materiality assessment has concluded that plastics, both microplastics and single-use plastic waste, do not constitute a material concern for Dover, given that our primary business operations neither entail the use nor the production of plastic products or components. Instead, metals stand as the predominant raw materials within our operations. We are committed to periodically reassessing our materiality assessment every few years. Should the significance of plastics within our value chain escalate in future assessments, we are prepared to undertake a comprehensive plastics mapping.

[Fixed row]

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

0

(2.1.3) To (years)

3

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Focus on operational efficiency, immediate risk mitigation, and cash flow management to ensure daily business continuity and quick response to immediate threats.

Medium-term

(2.1.1) From (years)

3

(2.1.3) To (years)

10

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Prioritize growth initiatives, competitive positioning, and regulatory compliance, while managing investments and debt to balance medium-term profitability and risk exposure.

Long-term

10

(2.1.2) Is your long-term time horizon open ended?

Select from:

✓ No

(2.1.3) To (years)

30

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Invest in sustainability, innovation, and strategic alliances, with a focus on long-term investments and diversification to secure the company's future against evolving risks.

[Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

Process in place	Dependencies and/or impacts evaluated in this process
Select from: ✓ Yes	Select from: ☑ Both dependencies and impacts

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in place	Risks and/or opportunities evaluated in this process	Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ✓ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Impacts
- ✓ Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain
- ☑ End of life management

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ☑ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Not location specific

(2.2.2.12) Tools and methods used

Enterprise Risk Management

- ☑ Enterprise Risk Management
- ✓ Internal company methods

Other

- ✓ Desk-based research
- ✓ Internal company methods
- ✓ Materiality assessment
- ✓ Partner and stakeholder consultation/analysis
- ✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- Drought
- ✓ Flood (coastal, fluvial, pluvial, ground water)
- ✓ Heat waves
- ☑ Heavy precipitation (rain, hail, snow/ice)

Chronic physical

☑ Change in land-use

- ✓ Increased severity of extreme weather events
- ☑ Soil degradation
- ✓ Water availability at a basin/catchment level
- ✓ Water stress

Policy

✓ Carbon pricing mechanisms

Market

- ✓ Availability and/or increased cost of raw materials
- ☑ Changing customer behavior

Reputation

- ✓ Impact on human health
- ✓ Increased partner and stakeholder concern and partner and stakeholder negative feedback

Technology

☑ Transition to lower emissions technology and products

Liability

- ☑ Exposure to litigation
- ✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- Employees
- Investors
- Suppliers

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

In addition to considering our past, in-depth climate analysis, Dover conducted its first double materiality assessment to prepare for compliance with the European Union's Corporate Sustainability Reporting Directive across each of our environmental areas. Dover assessed impacts, risks, and opportunities across each of the subtopics identified in Annex I of the European Sustainability Reporting Standards (ESRS).

[Add row]

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

✓ Yes

(2.2.7.2) Description of how interconnections are assessed

In conducting its ESRS-aligned double materiality assessment, Dover evaluated a range of environmental (including biodiversity and nature-related) topics, noting many interconnections with climate-related factors. For instance, the assessment highlighted the water withdrawal required for Dover's business operations, noting that climate change will impact water availability and quality. This example illustrates the intricate linkages between water management practices, ecosystem health, and climate stability.

[Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ No, and we do not plan to within the next two years

(2.3.7) Primary reason for not identifying priority locations

Select from:

✓ Judged to be unimportant or not relevant

(2.3.8) Explain why you do not identify priority locations

Our recent materiality assessment has concluded that biodiversity and nature-related topics, do not constitute a material concern for Dover, given that neither our primary business operations nor our customers are in the agriculture, forestry, pharmaceuticals, or other habitat altering industries. We are committed to periodically reassessing our materiality assessment every few years. Should the significance of nature and biodiversity within our value chain escalate in future assessments, we are prepared to determine focus areas in which ecosystem health is challenged.

[Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

Revenue

(2.4.3) Change to indicator

Select from:

☑ Absolute decrease

(2.4.5) Absolute increase/ decrease figure

100000000

(2.4.6) Metrics considered in definition

Select all that apply

- ☑ Time horizon over which the effect occurs
- ☑ Likelihood of effect occurring

(2.4.7) Application of definition

We conducted an assessment of more than 20 ESG risks and opportunities relevant to our business. The assessment of whether a risk or opportunity was significant to Dover was guided by the criteria set out in ESRS 1, which defines financial materiality in terms of the size and likelihood of the risk or opportunity. Size refers to the financial magnitude of the risk or opportunity, while likelihood pertains to its chance of occurrence. Our criteria to determine whether a risk or opportunity was material or not was informed by our enterprise risk management thresholds as well as our materiality thresholds in financial reporting. As an example, we evaluated the risk of increased severe weather events impacting Dover's facilities. This analysis involved estimating the financial impact of potential damage using data from past incidents and combining it with the projected frequency of such weather events, as forecasted by research institutions.

Opportunities

(2.4.1) Type of definition

Select all that apply

Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

Revenue

(2.4.3) Change to indicator

Select from:

✓ Absolute increase

(2.4.5) Absolute increase/ decrease figure

100000000

(2.4.6) Metrics considered in definition

Select all that apply

- ☑ Time horizon over which the effect occurs
- ✓ Likelihood of effect occurring

(2.4.7) Application of definition

We conducted an assessment of more than 20 ESG risks and opportunities relevant to our business. The assessment of whether an opportunity was significant to Dover was guided by the criteria set out in ESRS 1, which defines financial materiality in terms of the size and likelihood of the opportunity. Size refers to the potential financial benefit or value creation, while likelihood pertains to the probability of the opportunity materializing. Our criteria to determine whether an opportunity was material were informed by our enterprise risk management thresholds and our financial reporting materiality thresholds. or example, we evaluated the opportunity to enhance stakeholder relationships and increase market share through the adoption of circular and durable product designs. This analysis involved estimating the potential revenue growth and customer retention benefits associated with more sustainable product offerings, as well as assessing the likelihood of market acceptance and alignment with evolving customer and regulatory expectations.

[Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ No, we do not identify and classify our potential water pollutants

(2.5.3) Please explain

Our recent materiality assessment has concluded that water topics, including water pollutants do not constitute a material concern for Dover. Dover's two most recent 10-K reports indicated that the estimated liabilities associated with environmental issues and other related matters—including private claims related to hazardous substance exposure—were not substantial. Therefore, water pollution is not a material topic for Dover. We are committed to periodically reassessing our materiality assessment annually. Should the significance of water pollutants within our value chain escalate in future assessments, we are prepared to determine identify and classify such water pollutants.

[Fixed row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.1.1) Environmental risks identified

Select from:

✓ Yes, both in direct operations and upstream/downstream value chain

Water

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

☑ Environmental risks exist, but none with the potential to have a substantive effect on our organization

(3.1.3) Please explain

Overall, water risks are not expected to generate a substantive change in our business, operations, revenues, or expenditures in the short-, medium- or long-term. The vast majority of our water comes from the local utility operating in the vicinity of our operations. While Dover has some operations in water scarce regions based on our assessment of water risk using WRI Aqueduct, our business is not water intensive. It is unlikely that water shortages or increases in incidence of drought conditions will significantly impact our business operations. Severe weather events like flooding and hurricanes pose risks for our business. However, based on our assessments, we do not believe water-related physical risks from severe weather have the potential to cause a substantive financial or strategic impact on our business in the current timeframe

Plastics

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

☑ Environmental risks exist, but none with the potential to have a substantive effect on our organization

(3.1.3) Please explain

Our recent materiality assessment has concluded that plastics, both microplastics and single-use plastic waste, do not constitute a material concern for Dover, given that our primary business operations neither entail the use nor the production of many plastic products or components. Instead, metals stand as the predominant raw materials within our operations. Among Dover's over a dozen operating companies, this impact is limited to the operations of one operating company because of its pelletizing systems. This diversification reduces financial risk to Dover. We are committed to periodically reassessing our materiality assessment annually. Should the significance of plastics within our value chain escalate in future assessments, we will reassess the risks.

[Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Policy

☑ Carbon pricing mechanisms

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

China

✓ India

✓ Italy

Japan

✓ Spain

✓ Sweden

✓ Belgium✓ Czechia

<u>V</u> CZeCilia

Denmark

✓ Germany

Singapore

Netherlands

Philippines

✓ Dominican Republic

✓ Russian Federation

✓ Brazil

Canada

France

Mexico

Poland

✓ Malaysia

✓ Slovakia

Thailand

Argentina

Australia

✓ United States of America

✓ United Kingdom of Great Britain and Northern Ireland

(3.1.1.9) Organization-specific description of risk

Regulatory developments related to greenhouse gas emissions may lead to increased compliance costs for our operations. Our domestic and international activities are subject to evolving legal and policy frameworks, including those governing carbon emissions, energy efficiency, and product design. Non-compliance with these

requirements could result in financial and reputational consequences. Emerging carbon pricing mechanisms—such as the EU Green Deal and other tax or emissions trading schemes—may further impact our cost structure. We cannot guarantee that future regulatory obligations will not exceed current expectations.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased indirect [operating] costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very likely

(3.1.1.14) Magnitude

Select from:

✓ Low

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the short term, Dover may experience increased operating costs as a result of carbon pricing initiatives such as carbon taxes or emissions trading systems (ETS). The necessity to purchase carbon credits or pay for greenhouse gas (GHG) emissions could lead to higher expenses, directly impacting Dover's net income and potentially its cash flows. Dover might also face elevated compliance and administrative costs due to the stringent requirements for monitoring, reporting, and verifying emissions. As Dover operates in various sectors, some of its less energy-efficient divisions could suffer a competitive disadvantage, prompting a possible reevaluation of product pricing to mitigate the new expenses, which in turn could affect market demand and sales volumes. Immediate investments in technology to reduce emissions may be necessary, further influencing cash flows. Over the long-term, Dover will likely need to undertake strategic shifts, including substantial capital investments to modernize facilities and processes to lower emissions. These long-term financial commitments can alter Dover's financial performance and cash flows but may also present new market opportunities as we seek to innovate or transition towards more sustainable business practices. Furthermore, as environmental factors become increasingly important in financial decision-making, Dover's high-emission business units might encounter difficulties in accessing capital. Insurance premiums could also rise if higher emissions are perceived as increasing operational risks. To mitigate these potential financial impacts and

capitalize on emerging opportunities, Dover is proactively managing these risks through strategic planning, targets for emissions reduction, and diligent regulatory compliance.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

80000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

1600000

(3.1.1.25) Explanation of financial effect figure

Dover assessed potential financial impacts of carbon pricing by modeling two climate scenarios—one aligned with a business-as-usual pathway and another with a two-degree transition pathway. Carbon price trajectories were based on established datasets: GCAM4 - SSP4-6.0 for the business-as-usual scenario and IMAGE — SSP1 — 2.6 for the two-degree scenario. The analysis projected Scope 1 and 2 emissions reductions in line with Dover's science-based targets and applied scenario-specific carbon prices to estimate annual costs. These costs were discounted to present value using a 5% rate and averaged over a 30-year horizon to derive a representative annualized impact. This approach provides a directional estimate of potential exposure under varying climate policy futures.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Establish organization-wide targets

(3.1.1.27) Cost of response to risk

2000000

(3.1.1.28) Explanation of cost calculation

Dover tracks regulatory updates and evaluates potential risk for increased costs in high-risk areas due to climate legislation or taxes. We attempt to control such costs through fixed-price contracts with suppliers and various other programs, such as our global supply chain activities. Dover has also set science-based targets for reducing Scope 1 and 2 emissions 30% by 2030 and Scope 3 emissions 15% by 2030 relative to a 2019 baseline. Implementation of science-based targets will reduce Dover's risk from carbon pricing.

(3.1.1.29) Description of response

Dover tracks regulatory updates and evaluates potential risk for increased costs in high-risk areas due to climate legislation or taxes. We attempt to control such costs through fixed-price contracts with suppliers and various other programs, such as our global supply chain activities. Dover has also set science-based targets for reducing Scope 1 and 2 emissions 30% by 2030 and Scope 3 emissions 15% by 2030 relative to a 2019 baseline. Implementation of science-based targets will reduce Dover's risk from carbon pricing.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Market

✓ Other market risk, please specify: Increased cost of raw materials

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Upstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

China

✓ Brazil

✓ India

Canada

- Italy
- Japan
- ✓ Spain
- Sweden
- ✓ Belgium
- Czechia
- Denmark
- Germany
- Singapore
- Netherlands
- Philippines
- Switzerland
- ✓ Taiwan, China

- ✓ France
- ✓ Mexico
- ✓ Poland
- Malaysia
- Slovakia
- Thailand
- Argentina
- Australia
- ✓ Dominican Republic
- ✓ Russian Federation
- ✓ United States of America
- ✓ United Kingdom of Great Britain and Northern Ireland

(3.1.1.9) Organization-specific description of risk

Carbon pricing could cause an increase in upstream annual logistics costs under a "Green" or two-degree climate scenario. Logistics costs represent a small but significant portion of costs and Scope 3 emissions (~1.5% of Scope 3 emissions). For example, a carbon price assumption of \$100/ton by 2050 would result in an average additional annual cost of \$7.5 million, or a cumulative cost of \$230 million over the next 30 years assuming no changes in emissions intensity of logistics.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased indirect [operating] costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

☑ About as likely as not

(3.1.1.14) Magnitude

Select from:

✓ Low

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Dover might see a reduction in its profit margins due to the increase in the cost of raw materials. Additionally, this could lead to tighter cash flows, necessitating a review of supply chain strategies to mitigate the impact of these increased expenses on Dover's financial position. Over the long term, the cumulative effect of increased raw material costs due to carbon pricing could be substantial for Dover, potentially amounting to millions of dollars in additional expenses over the next few decades. If Dover does not adapt its emissions intensity in logistics, the projected carbon price of \$100/ton by 2050 could result in a significant cumulative cost, impacting the company's long-term financial sustainability. To address this, we will need to spend on R&D to explore alternative materials to manage these escalating costs. We will also need to spend to reduce the carbon footprint of our supply chain to help manage long-term costs and also position us favorably in a market that increasingly values environmental responsibility.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

400000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

7500000

(3.1.1.25) Explanation of financial effect figure

Dover evaluated potential carbon pricing impacts under two climate scenarios: a business-as-usual pathway and a two-degree transition pathway. Carbon price assumptions were informed by established datasets—GCAM4 - SSP4-6.0 for the former and IMAGE – SSP1 – 2.6 for the latter. The analysis projected linear

reductions in Scope 1 and 2 emissions consistent with Dover's science-based targets. Annual emissions were multiplied by scenario-specific carbon prices, discounted to present value using a 5% rate, and averaged over a 30-year period to estimate the potential annualized cost exposure.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Improve monitoring of upstream and downstream activities

(3.1.1.27) Cost of response to risk

100000

(3.1.1.28) Explanation of cost calculation

Cost to implement is estimated based on potential costs of one supply chain optimization project at a specific operating company based on a Dover-led study designed to reduce the average length of haul as described above. This provides a representative starting point for potentially broader actions to mitigate this risk.

(3.1.1.29) Description of response

Dover has set science-based targets for reducing Scope 1 and 2 emissions 30% by 2030 and Scope 3 emissions 15% by 2030 relative to a 2019 baseline.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk3

(3.1.1.3) Risk types and primary environmental risk driver

Technology

✓ Unsuccessful investment in new technologies

(3.1.1.4) Value chain stage where the risk occurs

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

China

✓ India

✓ Italy

Japan

Spain

Sweden

✓ Belgium✓ Czechia

✓ Denmark

Germany

Singapore

Netherlands

Philippines

✓ Switzerland

✓ Taiwan, China

✓ Brazil

Canada

France

Mexico

Poland

Malaysia

✓ Slovakia

Thailand

Argentina

Australia

✓ Dominican Republic

✓ Russian Federation

✓ United States of America

✓ United Kingdom of Great Britain and Northern Ireland

(3.1.1.9) Organization-specific description of risk

Our financial performance is partly reliant on the successful development, commercialization, and market acceptance of innovative products and services. Rapid technological evolution, frequent launches, and shifting industry standards in our sectors necessitate prompt market entry and can lead to unpredictable product cycles and shorter lifespans. Industries like environmental management, retail fueling, and packaging, which may be affected by climate change policies and the shift to a low-carbon economy, are particularly relevant to our operations. Our ability to meet customer demands with high-quality, sustainable, and competitive offerings, while protecting intellectual property and securing third-party technology rights, is crucial. Failing to generate and maintain customer interest in new products and services could negatively impact our operations, financial health, and cash flow. Moreover, any research, development, production, or marketing setbacks could hinder our ability to recover or profit from our investment in new product and service innovations.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Decreased revenues due to reduced demand for products and services

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Unlikely

(3.1.1.14) Magnitude

Select from:

Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The rapid pace of technological evolution in Dover's key industries, such as retail fueling, demands quick market entry to stay competitive. If new products fail to gain commercial success or market acceptance, Dover may face immediate financial repercussions. The costs associated with research, development, production, and marketing of these technologies could result in sunk costs that do not yield the expected return on investment. This could lead to a decrease in profit margins and strain on cash flows, particularly if product cycles are shorter than anticipated and do not allow for the recoupment of invested capital. Additionally, setbacks in these areas could impede Dover's ability to maintain its market position and meet customer demands for high-quality, sustainable, and competitive offerings. Over the longer term, the impact of unsuccessful technology investments on Dover's financial sustainability could be more pronounced. Continuous failure to develop and commercialize innovative products that align with shifting industry standards and climate change policies could result in a sustained decline in Dover's market share and reputation. This could limit our ability to attract future investment. To mitigate these risks, Dover is focusing on robust market research and effective commercialization strategies to ensure that new technologies are not only innovative but also aligned with market needs and trends.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

1

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

77000000

(3.1.1.25) Explanation of financial effect figure

The potential financial impact of technology risk is provided as an order of magnitude estimate based on a percentage of Dover's revenue. Dover's revenue was 7.7 billion in 2024. 77 million is 1% of Dover's 2024 revenue.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Increase investment in R&D

(3.1.1.27) Cost of response to risk

29920000

(3.1.1.28) Explanation of cost calculation

The cost provided represents one fifth of the total R&D spend; our total R&D spend consolidates all of our business segments. Dover does not disclose research and development spending per segment. We continue to prioritize innovation and research and development activities; our R&D spend in 2024 represented 1.9% of our annual revenue.

(3.1.1.29) Description of response

We are committed to creating economic value for shareholders by developing products designed to help our customers meet their sustainability goals in response to evolving regulatory and environmental standards. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. In our Climate & Sustainability Technologies segment, SWEP, a manufacturer of brazed plate heat exchangers, focuses on the conversion to sustainable and renewable energy usage in heat transfer. Heat exchangers transfer heat from one media to another, causing the desired temperature change. But in this process, some of the energy can be wasted. The exact amount of heat wasted depends, in large part,

upon the type of exchanger used. Brazed plate heat exchangers (BPHEs) by SWEP are specifically designed to maximize heating and cooling performance while simultaneously minimizing energy loss.

[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

☑ Other, please specify :Not currently reported

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

Dover does not currently report this information [Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

(3.3.1) Water-related regulatory violations

Select from:

Yes

(3.3.2) Fines, enforcement orders, and/or other penalties

Select all that apply

✓ Fines

(3.3.3) Comment

On November 26, 2024, Engineered Controls International, LLC ("ECI"), an indirect subsidiary of Dover Corporation, received a Notice of Violation and assessment of civil penalty in the amount of \$250.00 from the City of Conover, North Carolina, related to alleged nickel exceedances inconsistent with ECI's industrial user permit and the City's sewer use ordinance. ECI timely paid the \$250.00 civil penalty and has continued to sample for nickel on a monthly basis. No additional nickel exceedances have been identified to date.

[Fixed row]

(3.3.1) Provide the total number and financial value of all water-related fines.

(3.3.1.1) Total number of fines

(3.3.1.2) Total value of fines

250

(3.3.1.3) % of total facilities/operations associated

0.2

(3.3.1.4) Number of fines compared to previous reporting year

Select from:

✓ About the same

(3.3.1.5) Comment

On November 26, 2024, Engineered Controls International, LLC ("ECI"), an indirect subsidiary of Dover Corporation, received a Notice of Violation and assessment of civil penalty in the amount of \$250.00 from the City of Conover, North Carolina, related to alleged nickel exceedances inconsistent with ECI's industrial user permit and the City's sewer use ordinance. ECI timely paid the \$250.00 civil penalty and has continued to sample for nickel on a monthly basis. No additional nickel exceedances have been identified to date.

[Fixed row]

(3.3.2) Provide details for all significant fines, enforcement orders and/or other penalties for water-related regulatory violations in the reporting year, and your plans for resolving them.

Row 1

(3.3.2.1) Type of penalty

Select from:

☑ Other penalty type, please specify: Civil Administrative Penalty

(3.3.2.2) Financial impact

(3.3.2.3) Country/Area & River basin

United States of America

✓ Other, please specify :Catawba River Basin

(3.3.2.4) Type of incident

Select from:

☑ Effluent limit exceedances

(3.3.2.5) Description of penalty, incident, regulatory violation, significance, and resolution

On November 26, 2024, Engineered Controls International, LLC ("ECI"), an indirect subsidiary of Dover Corporation, received a Notice of Violation and assessment of civil penalty in the amount of \$250.00 from the City of Conover, North Carolina, related to alleged nickel exceedances inconsistent with ECI's industrial user permit and the City's sewer use ordinance. ECI timely paid the \$250.00 civil penalty and has continued to sample for nickel on a monthly basis. No additional nickel exceedances have been identified to date.

[Add row]

(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Select from:

- ☑ No, and we do not anticipate being regulated in the next three years
- (3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental opportunities identified
Climate change	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized
Water	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

☑ Development of new products or services through R&D and innovation

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

China

India

✓ Italy

Japan

☑ Spain

Sweden

✓ Belgium

Czechia

Denmark

Germany

Singapore

Netherlands

Philippines

Switzerland

✓ Taiwan, China

✓ Brazil

Canada

France

Mexico

▼ Poland

Malaysia

✓ Slovakia

✓ Thailand

Argentina

Australia

✓ Dominican Republic

✓ Russian Federation

✓ United States of America

✓ United Kingdom of Great Britain and Northern Ireland

(3.6.1.8) Organization specific description

Dover's revenue is well-distributed across its five segments. Under a RCP 2.6 climate scenario, Dover anticipates increased sales of sustainable products due to regulatory and consumer pressures for low-carbon options. In the Climate & Sustainability Technologies segment, Dover has developed Advanced Second Nature (SN) refrigeration systems that use less refrigerant than traditional systems, leading to reduced emissions. These SN systems use CO2-based refrigerants with a low global-warming potential (GWP) compared to high-GWP hydrofluorocarbons. Additionally, Dover's Belvac technology reduces aluminum usage in beverage containers, contributing to less metal waste and promoting the use of recyclable aluminum over glass, which has a less efficient recycling process. This lightweighting of aluminum cans results in significantly lower emissions compared to glass and plastic alternatives. These initiatives are part of Dover's strategy to capitalize on the demand for sustainable products and technologies.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Virtually certain (99–100%)

(3.6.1.12) Magnitude

Select from:

Medium

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the short term, Dover's financial position is likely to experience an increase in expenses due to the initial investment in research and development (R&D) for new products and services. The financial performance may not immediately reflect significant revenue growth as the development and market introduction of innovative products such as our CO2-refrigeration systems and Belvac machinery take time. However, the company may begin to see revenue growth from early adopters and environmentally conscious consumers. Cash flows could be negatively impacted by the upfront R&D expenditures and capital investments in new technologies, but this may be partially offset by any increase in sales from new or improved products. In the medium term, Dover's financial position is expected to strengthen as the investment in R&D pays off with increased demand for low-carbon, sustainable products driven by regulatory and consumer pressures. The financial performance should improve as revenues grow from the sale of innovative products like Belvac's efficient aluminum usage in beverage containers, and our CO2 refrigeration systems that offer a natural alternative to high GWP refrigerants. The company's cash flows are likely to benefit from the higher margins associated with these advanced products and the potential for market leadership in sustainable technologies. Additionally, the cost savings from reduced material usage and the positive environmental impact of these products could enhance Dover's reputation and brand value, leading to sustained financial benefits.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

77000001

(3.6.1.23) Explanation of financial effect figures

The potential financial impact of low-carbon product opportunities is provided as an order of magnitude estimate based on a percentage of Dover's revenue was 7.7 billion in 2024. 77 million is 1% of Dover's 2024 revenue. The actual revenue could be higher or lower.

(3.6.1.24) Cost to realize opportunity

29920000

(3.6.1.25) Explanation of cost calculation

The cost provided represents one fifth of the total R&D spend; our total R&D spend consolidates all of our business segments. Dover does not disclose research and development spending per segment

(3.6.1.26) Strategy to realize opportunity

Dover is committed to creating economic value for shareholders by developing products designed to help customers meet their sustainability goals in response to evolving regulatory and environmental standards. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. In our Climate & Sustainability Technologies segment, SWEP, a manufacturer of brazed plate heat exchangers, focuses on opportunities created by the conversion to sustainable and renewable energy usage in heat transfer. Its Passive Cooling Unit, for example, uses natural cooling from the ground or groundwater to remove excess heat from interiors with the process requiring only a small amount of electricity for the circulation pumps which make this solution both very energy efficient and cost effective.

Water

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

☑ Reduced impact of product use on water resources

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ China
✓ Brazil

✓ India

✓ Italy

✓ Japan
✓ Mexico

✓ Spain✓ Poland✓ Sweden✓ Malaysia

✓ Belgium
✓ Slovakia

✓ Czechia
✓ Thailand

✓ Denmark
✓ Argentina

✓ Germany
✓ Australia

✓ Singapore
✓ Dominican Republic

✓ Netherlands
✓ Russian Federation

☑ Philippines
☑ United States of America

✓ Switzerland
✓ United Kingdom of Great Britain and Northern Ireland

✓ Taiwan, China

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

- Bravo
- ✓ Loire
- ✓ Meuse
- Rhine
- ✓ Trent
- ✓ Mississippi River
- ✓ Colorado River (Pacific Ocean)

- ✓ Volga
- ✓ Danube
- ✓ Elbe River
- ✓ Hudson River
- Delaware River

(3.6.1.8) Organization specific description

Dover focuses on creating shareholder value by innovating products that support customer sustainability, particularly in water resource management. In 2024, R&D investments were 1.9% of annual revenue. The Pumps & Process Solutions segment features Hydro Systems' products that dilute and dispense cleaning chemicals for commercial use, enhancing environmental responsibility and safety. The EvoClean dispenser, a unique venturi-based, water-powered laundry dispenser, eliminates the need for squeeze tubes, reducing maintenance costs and ensuring precise chemical delivery. It uses 66% less water and 87% less electricity than traditional systems, aligning with customer sustainability goals. Since its 2018 launch, over 10,000 EvoClean units have been installed in EMEA and APAC, demonstrating Dover's commitment to resource efficiency and sustainable innovation.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Very likely (90–100%)

(3.6.1.12) Magnitude

Select from:

✓ High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the short term, Dover's financial position may experience a modest increase in expenses due to the ongoing investment in research and development to innovate products like the EvoClean dispenser. This R&D spend, while representing a small percentage of annual revenue, is essential for product development and may not immediately translate into significant revenue growth. Cash flows might be affected by the R&D expenditures and the initial costs of scaling up production and marketing for the new products. However, any increase in operating expenses is likely to be offset by the cash inflows from sales, as our products gain traction in the market. In the long term, Dover's financial position is likely to strengthen as the sustainability-focused innovations like the EvoClean dispenser become more widely adopted, leading to increased market share and customer loyalty. Financial performance is expected to improve significantly as the cost savings from reduced maintenance, water, and electricity consumption make these products more attractive to customers, potentially resulting in higher sales volumes and better profit margins. The long-term cash flows are anticipated to be positively impacted by the recurring revenue from these products and potential savings from more efficient production processes.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

1

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

77000000

(3.6.1.23) Explanation of financial effect figures

The potential financial impact is provided as an order of magnitude estimate based on a percentage of Dover's revenue. Dover's revenue was 7.7 billion in 2024. 77 million is 1% of Dover's 2024 revenue. The actual revenue could be higher or lower.

(3.6.1.24) Cost to realize opportunity

(3.6.1.25) Explanation of cost calculation

Dover's initial R&D investment in products will slightly increase expenses, impacting short-term cash flows without immediate significant revenue growth. However, sales from these innovations are expected to offset these costs.

(3.6.1.26) Strategy to realize opportunity

We will continue to promote our Pumps & Process Solutions segment products, including those, such as, Hydro Systems' products that enhance environmental responsibility and safety. Additionally, we are committed to a thorough evaluation of water-related risks across our value chain, ensuring that water conservation is an integral part of our product development process.

[Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

600000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

☑ 1-10%

(3.6.2.4) Explanation of financial figures

Dover has conducted an initial EU Taxonomy Assessment to determine what revenue meets the requirements for eligibility in 2023. This includes products and services meeting multiple climate change mitigation activities including Manufacture of energy efficiency equipment and Manufacture of equipment for the production and use of hydrogen among others. Note: this figure does not include significant amounts of revenue from the EU Taxonomy circular economy objective and should not be considered a complete representation of EU taxonomy eligibility.

Water

(3.6.2.1) Financial metric

Select from:

✓ Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

0

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ Less than 1%

(3.6.2.4) Explanation of financial figures

Dover has conducted an initial EU Taxonomy Assessment to determine what revenue meets the requirements for eligibility in 2023. While Dover has products that help reduce water usage, the EU Taxonomy takes a narrow focus on six activities centered around water supply systems, water treatment systems, and nature-based solutions for flood and drought risk prevention which are generally not relevant for Dover.

[Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

√ Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

Quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

☑ Executive directors or equivalent

✓ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Our Board has adopted a policy, reflected in our Corporate Governance Guidelines, requiring that the initial list of potential director and external CEO candidates presented by third-party search firms include qualified candidates who reflect diverse backgrounds. Our Board believes that diverse perspectives enhance its decision-making and contribute to the success of Dover.

(4.1.6) Attach the policy (optional)

Corp Gov Guidelines - FINAL	November 2024.pdf
[Fixed row]	

(4.1.1) Is there board-level oversight of environmental issues within your organization?

Climate change

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

✓ Yes

Water

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

Yes

Biodiversity

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

✓ No, and we do not plan to within the next two years

(4.1.1.2) Primary reason for no board-level oversight of this environmental issue

Select from:

✓ Not an immediate strategic priority

(4.1.1.3) Explain why your organization does not have board-level oversight of this environmental issue

Our recent materiality assessment has concluded that biodiversity and nature-related topics, do not constitute a material concern for Dover. We are committed to periodically reassessing our materiality assessment every few years. Should the significance of nature and biodiversity within our value chain escalate in future assessments, we are prepared to include biodiversity as a strategic priority for Dover's leadership.

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Chief Executive Officer (CEO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ No

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing the setting of corporate targets

☑ Monitoring progress towards corporate targets

☑ Reviewing and guiding innovation/R&D priorities

☑ Approving and/or overseeing employee incentives

✓ Monitoring the implementation of the business strategy

✓ Overseeing and guiding the development of a business strategy

(4.1.2.7) Please explain

The Board of Directors (the "Board") maintains oversight of the Company's Environmental, Social, and Governance ("ESG") strategy, including the integration of environmental and climate-related risks and opportunities into corporate strategy and operations. The Board's responsibilities include monitoring progress toward sustainability goals and ensuring alignment with long-term value creation. As part of its oversight, the Board also monitors evolving ESG regulations and evaluates their potential impact on the Company's strategy, operations, and risk profile. The Company's Chief Executive Officer (CEO), who is a member of the Board, holds executive accountability for ESG matters, including climate-related initiatives. The Board sets strategic ESG-related objectives for the CEO and evaluates performance against these objectives as part of the CEO's annual performance review. In 2021, the Board and CEO jointly approved science-based targets to reduce operational greenhouse gas emissions by 30% and value chain emissions by 15% by 2030, using a 2019 baseline. In 2024, the Board continued to oversee progress toward these targets, including reviewing annual updates on emissions performance, decarbonization efforts, and climate risk mitigation strategies. Additionally, the Board also provided oversight of the Company's enterprise risk management (ERM) framework, which encompasses environmental and social risks.

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Chief Executive Officer (CEO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ No

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing and guiding the development of a business strategy

✓ Overseeing the setting of corporate targets

☑ Monitoring progress towards corporate targets

- ☑ Reviewing and guiding innovation/R&D priorities
- ☑ Approving and/or overseeing employee incentives

(4.1.2.7) Please explain

Our Board of Directors (the "Board") oversees our Environmental, Social, and Governance ("ESG") strategy and the incorporation of sustainability related risks and opportunities into its overall strategic decision-making process across all of our portfolio companies. The Board's oversight spans a wide array of ESG issues, including those related to water, climate change, health and safety, diversity and inclusion, ethics and compliance, and long-term environmental protection. Dover's CEO, who is a member of the Board, has management responsibility over ESG issues, including those related to water. As part of its continued focus on sustainability, the Board incorporates ESG oversight into our CEO's annual performance and compensation evaluation as one of the CEO's strategic objectives. [Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

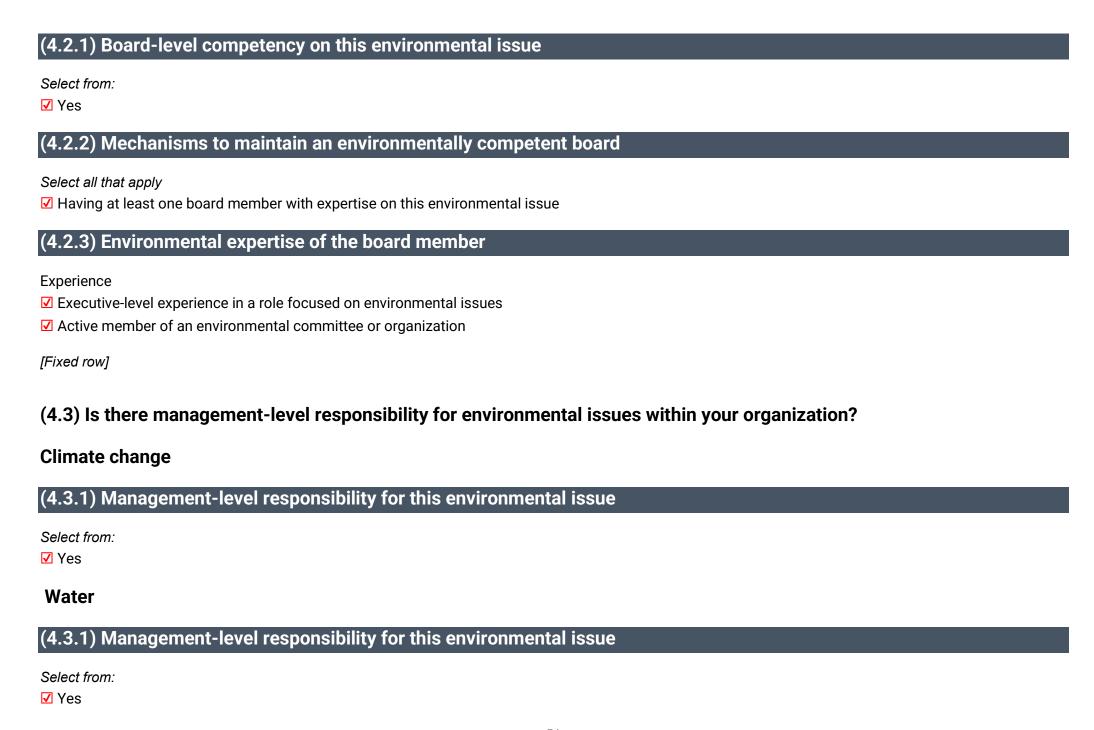
(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply


☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Active member of an environmental committee or organization

Water

Biodiversity

(4.3.1) Management-level responsibility for this environmental issue

Select from:

✓ No, and we do not plan to within the next two years

(4.3.2) Primary reason for no management-level responsibility for environmental issues

Select from:

✓ Not an immediate strategic priority

(4.3.3) Explain why your organization does not have management-level responsibility for environmental issues

Our recent materiality assessment has concluded that biodiversity and nature-related topics, do not constitute a material concern for Dover. We are committed to periodically reassessing our materiality assessment every few years. Should the significance of nature and biodiversity within our value chain escalate in future assessments, we are prepared to include biodiversity as a strategic priority for Dover's leadership.

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

☑ Measuring progress towards environmental corporate targets

- ☑ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

Our Chief Executive Officer (CEO), who is a member of the Board of Directors, holds executive accountability for ESG issues, including those related to climate change. To support the management of ESG issues across our businesses, we have established a cross-functional Sustainability Steering Committee, composed of leaders from Dover corporate, including the CEO, and operating companies. This committee oversees our sustainability strategy, initiatives, target-setting, performance, and reporting. The Sustainability Steering Committee considers climate-related and water-related risks as part of its mandate. It aims to meet at least quarterly and provides updates to the Board at least annually, ensuring alignment between operational execution and strategic oversight. In 2024, the committee played a key role in tracking progress against Dover's Science-Based Targets, identifying opportunities for improved performance and enhanced tracking. The committee also monitored regulatory developments that may impact our climate strategy. Our Senior Vice President, General Counsel & Secretary is responsible for managing overall sustainability and ESG reporting and strategy for Dover. She chairs the Sustainability Steering Committee and leads the implementation of the sustainability strategy as set by the CEO and the Board. Her responsibilities include day-to-day oversight of sustainability disclosures, ESG performance, and governance. Dover remains committed to creating long-term economic value for shareholders by developing products that help customers meet their sustainability goals. We view sustainability-driven innovation as a significant growth opportunity that also contributes to enhanced resource efficiency and reduced greenhouse gas emissions.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

Our Chief Executive Officer (CEO), who is a member of the Board of Directors holds executive accountability for ESG issues, including those related to water. To support the management of ESG issues across our businesses, we have established a cross-functional Sustainability Steering Committee, composed of leaders from Dover corporate, including the CEO, and operating companies. This committee oversees our sustainability strategy, initiatives, target-setting, performance, and reporting, including the monitoring and reporting of Dover's water consumption. The Sustainability Steering Committee considers water-related and climate-related risks as part of its mandate. It aims to meet at least quarterly and provides updates to the Board at least annually.

[Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

4

(4.5.3) Please explain

In 2024, two members of Dover's executive leadership team (its Chief Executive Officer and General Counsel) had monetary incentives directly tied to the management of ESG issues, as part of their strategic objectives. These ESG-related goals were embedded within the Strategic Objectives Factor, which accounts for 40% of each executive's overall bonus calculation. For the CEO, ESG represented 20% of this strategic component, while for the General Counsel, it comprised 25%. The CEO's and General Counsel's ESG objectives included leading the execution of Dover's multi-year ESG strategic plan, enhancing sustainability governance and disclosures, and actively engaging with the Board and the Sustainability Steering Committee to align with evolving ESG regulatory expectations.

Water

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ No, and we do not plan to introduce them in the next two years

(4.5.3) Please explain

We do not plan to introduce monetary incentives in the next two years as Water was not a material topic per our recently completed ESRS-aligned Double Materiality Assessment [Fixed row]

(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

General Counsel

(4.5.1.2) Incentives

Select all that apply

☑ Bonus - % of salary

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ☑ Achievement of environmental targets

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

25% of the GC's Strategic Objectives Factors relate to ESG.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

As Chair of the Sustainability Steering Committee, the GC leads cross-functional execution of Dover's sustainability strategy. Her performance is tied to enhancing ESG disclosures and compliance controls, particularly in response to evolving regulations like the EU's CSRD. This role is critical for ensuring Dover's climate transition planning is both credible and compliant.

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Executive Officer (CEO)

(4.5.1.2) Incentives

Select all that apply

☑ Bonus - % of salary

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ☑ Achievement of environmental targets

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

20% of the CEO's Strategic Objective Factors relate to ESG

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

Dover's CEO is evaluated on progress against the company's three-year ESG strategic plan, including regular reviews with the Board and active participation in the Sustainability Steering Committee. This ensures that climate-related priorities, such as emissions reduction, energy efficiency, and product innovation, are embedded in strategic decision-making and corporate oversight.

[Add row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?		
	Does your organization have any environmental policies?	
	Select from:	
[Fixed roud	✓ Yes	
[Fixed row]		
(4.6.1) Provide details of your environmenta	I policies.	
Row 1		
(4.6.1.1) Environmental issues covered		
Select all that apply ☑ Climate change ☑ Water		
(4.6.1.2) Level of coverage		
Select from: ☑ Organization-wide		
(4.6.1.3) Value chain stages covered		
Select all that apply ✓ Direct operations ✓ Upstream value chain		

✓ Downstream value chain

(4.6.1.4) Explain the coverage

Both our Code of Conduct and our Supplier Code of Conduct require our employees and our suppliers to commit to creating economic value for shareholders and customers through sustainable practices that protect the long-term well-being of the environment, our employees, and the communities in which we operate. Employees and suppliers are required to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. Employees and suppliers must also endeavor to conserve natural resources and energy, and reduce or eliminate waste and the use of hazardous substances. Dover is committed to creating economic value for shareholders and customers through sustainable practices that protect the long-term well-being of the environment, our employees, and the communities in which we operate.

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to comply with regulations and mandatory standards
- ✓ Commitment to take environmental action beyond regulatory compliance

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

✓ No, but we plan to align in the next two years

(4.6.1.7) Public availability

Select from:

✓ Publicly available

(4.6.1.8) Attach the policy

dover-code-of-conduct-en (1).pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

✓ Science-Based Targets Initiative (SBTi)

(4.10.3) Describe your organization's role within each framework or initiative

Dover submitted and has approved science-based targets for scope 1, 2, and 3 emissions through engagement with the Science Based Targets Initiative (SBTi) [Fixed row]

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

☑ No, and we do not plan to have one in the next two years

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

✓ No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

Through Sustainability Steering Committee (SSC) and senior management engagement with leadership across our segments and geographies, we ensure awareness and alignment with Dover's overall climate change strategy.

[Fixed row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

North America

☑ National Association of Manufacturers

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

✓ Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ No, we did not attempt to influence their position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

While NAM's position on new sustainability regulation has been nuanced, the association has shown support for sustainability initiatives. For instance, they announced a Sustainability in Manufacturing partnership with the U.S. Department of Energy in 2018. This partnership aimed to help U.S. manufacturers drive energy productivity improvements, accelerate the adoption of energy-efficient technologies, and serve as a platform to recognize companies and leaders that have led the way in the application of innovative strategies. In addition, NAM has advocated for practical sustainability, encouraging manufacturers to pursue feasible, scalable solutions that align with long-term decarbonization goals. At Dover, we are committed to driving energy efficiency and sustainable solutions for both our operations and our products.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

✓ Paris Agreement [Add row]

(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) **Publication**

Select from:

✓ In voluntary sustainability reports

(4.12.1.3) Environmental issues covered in publication

Select all that apply

✓ Climate change

Water

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

Strategy

✓ Governance

✓ Emissions figures

☑ Risks & Opportunities

☑ Content of environmental policies

(4.12.1.6) Page/section reference

All pages listed under Dover's sustainability website: https://www.dovercorporation.com/sustainability/

(4.12.1.7) Attach the relevant publication

Sustainability Overview _ Dover Corporation.pdf

(4.12.1.8) Comment

Dover refreshes is sustainability webpages annually. These webpages are in lieu of a sustainability report and contain information regarding each of our 18 material topics, plus our disclosures for TCFD, SASB, and GRI. We have attached just the overview page. The rest can be found here:

https://www.dovercorporation.com/sustainability/
[Add row]

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Water

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

✓ Every three years or less frequently [Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 2.6

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP1

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Acute physical

(5.1.1.6) Temperature alignment of scenario

Select from:

☑ 1.6°C - 1.9°C

(5.1.1.7) Reference year

2019

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

Stakeholder and customer demands

✓ Consumer sentiment

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Methodologies and expectations for science-based targets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

The selection of the RCP2.6 scenario for Dover's TCFD scenario analysis is based on the assumption that it will adequately test the company's resilience to transition risks associated with climate change, using carbon pricing and energy mix assumptions from SSPs and IEA STEPS. The analysis faces uncertainties such as the actual impact of extreme weather events and stakeholder perceptions of Dover's climate action. Constraints include the qualitative nature of the initial global scenario analysis and the potential limitations of high-level quantitative modeling, which may not capture all detailed implications for the business.

(5.1.1.11) Rationale for choice of scenario

The rationale for choosing the RCP2.6 scenario lies in its alignment with Dover's long-term view on climate risk, extending beyond the 2030 science-based target to the year 2050. This scenario, consistent with efforts to limit global warming to two degrees, enables Dover to test and enhance its strategies against stringent transition risks. The insights gained from the analysis underpin Dover's proactive decisions to set a science-based target and drive innovation in sustainable products, thereby fortifying the company's resilience to transition risks and informing the development of a low-carbon transition plan and improved risk management practices.

Water

(5.1.1.1) Scenario used

Water scenarios

☑ WRI Aqueduct

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Chronic physical

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2030

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

☑ Changes to the state of nature

Finance and insurance

✓ Cost of capital

✓ Sensitivity of capital (to nature impacts and dependencies)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

The Aqueduct tool relies on a robust methodology and the best-available data, yet uncertainties exist as the indicators of water risk are based on projections and models that may not capture real-time changes or localized events. Additionally, this scenario carries uncertainties related the effectiveness of local water management strategies, which can significantly influence water risk outcomes. Constraints of the SSP3 scenario include potential underestimation of technological advancements and adaptive capacities that could mitigate water risk.

(5.1.1.11) Rationale for choice of scenario

For Dover, operating under the assumption of a business-as-usual scenario provides a conservative approach to risk assessment, preparing the company for a future where water risk may intensify due to lack of coordinated action on water resource management. The SSP3 scenario allows Dover to plan for robust risk mitigation strategies, anticipating higher levels of water scarcity and competition for resources. This scenario underscores the potential risks to Dover's operations, including supply chain disruptions, increased operational costs, and heightened scrutiny from stakeholders concerned about environmental impacts. By planning for a future aligned with the SSP3 scenario, Dover can prioritize investments in water efficiency and local community engagement, thereby safeguarding its operations against the backdrop of increasing water risks and contributing to long-term sustainability.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP5

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Acute physical

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 4.0°C and above

(5.1.1.7) Reference year

2019

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

Stakeholder and customer demands

✓ Consumer sentiment

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Methodologies and expectations for science-based targets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

The RCP8.5 scenario was chosen for Dover's TCFD scenario analysis based on the assumption that it represents a business-as-usual pathway, suitable for assessing the company's resilience to physical climate risks. Uncertainties include the actual future frequency and severity of extreme weather events and the perception of stakeholders regarding Dover's climate actions. Constraints of the analysis are its qualitative nature and the reliance on high-level quantitative modeling, which may not fully capture the complexity of risks, especially given that this was Dover's first global scenario analysis.

(5.1.1.11) Rationale for choice of scenario

The rationale for selecting the RCP8.5 scenario is to evaluate Dover's resilience against significant physical risks of climate change, which are expected to be more pronounced in this scenario. The 2050 time horizon provides a long-term perspective, extending well beyond the 2030 science-based target (SBT), to understand the full extent of physical risks.

[Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy

(5.1.2.2) Coverage of analysis

Select from:

Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

We typically observe low to moderate climate risk impacts, with transition risks more pronounced under the 2°C scenario and physical risks more significant under the 4°C scenario. Our plan to achieve our new 2030 science-based targets enhances our resilience to climate risks in both pathways. To address physical risks - such as flooding from sea-level rise and increased storm frequency and intensity - our businesses have business continuity plans in place to protect people, property, and assets. These plans support preparedness for catastrophic events and help ensure timely recovery of operations. For transition risks, our science-based targets, energy and GHG reduction initiatives, and growing presence in clean fuels position us to navigate the shift to a low-carbon, sustainable business model.

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

☑ Resilience of business model and strategy

(5.1.2.2) Coverage of analysis

Select from:

Facility

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Dover used the WRI Aqueduct tool 4.0 to assess the number of facilities located in water-risked regions. Using this tool, we determined that 21% of Dover's facilities are in areas considered to be in high or extremely high "overall water risk". We anticipate in the future, that certain regions around the world, including regions where we already do business, will experience an increasing water risk due to external factors such as urbanization and changing climate patterns that will affect water availability. Dover plans on monitoring our operations in water risk areas and investing in technologies that promote water conservation and address water risk. [Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

✓ Yes, we have a climate transition plan which aligns with a 1.5°C world

(5.2.3) Publicly available climate transition plan

Select from:

✓ No

(5.2.4) Plan explicitly commits to cease all spending on, and revenue generation from, activities that contribute to fossil fuel expansion

Select from:

✓ No, and we do not plan to add an explicit commitment within the next two years

(5.2.6) Explain why your organization does not explicitly commit to cease all spending on and revenue generation from activities that contribute to fossil fuel expansion

Dover provides solutions for the transition away from fossil fuels. For example, our Clean Energy & Fueling segment is helping the expansion of gas stations' offerings of renewable fuels, helping global markets reduce the reliance on traditional fossil fuels. That said, we do not explicitly commit to ceasing all spending on and revenue generation from activities that contribute to fossil fuel expansion for several reasons. While we may be making strides in sustainable technologies, the broader market is in transition, including our suppliers and customers. A complete cessation might not be feasible without risking business continuity, especially in segments where renewable alternatives are not yet fully viable. Dover serves a diverse customer base with varying energy needs. We aim to meet these needs responsibly while encouraging the adoption of cleaner fuels and technologies.

(5.2.7) Mechanism by which feedback is collected from shareholders on your climate transition plan

Select from:

☑ We do not have a feedback mechanism in place, and we do not plan to introduce one within the next two years

(5.2.10) Description of key assumptions and dependencies on which the transition plan relies

The transition strategy is dependent on the procurement of renewable electricity, a shift from natural gas to alternative energy sources for operational machinery, the electrification of our fleet and equipment, regular surveillance for refrigerant leakages in air conditioning systems, and the implementation of energy-efficiency enhancements across all our operating companies. Furthermore, our strategy encompasses our product offerings, where we are actively seeking opportunities to decarbonize, designing products that facilitate a just transition, and staying abreast of market developments to ensure we can meet the growing demand for zero-emission products. In 2021, Dover committed to science-based targets to reduce its direct greenhouse gas emissions from operations 30% and reduce value chain emissions 15% by 2030 from a 2019 base year to align with a well-below 2-degree scenario. Dover intends to revalidate its targets in 2025 or 2026 so that they align with a 1.5-degree world, to the extent required by the Science-Based Target Initiative. This is included in a science-based target roadmap being refined internally and used to track progress to goals.

(5.2.11) Description of progress against transition plan disclosed in current or previous reporting period

Dover rolled out annual incentive plans for operating company presidents with a portion tied to operational decarbonization - specifically requiring the identification of projects that reduce greenhouse gas emissions while delivering meaningful financial returns, using the company-wide decarbonization roadmap as a foundation. On the product side, Dover operating companies pursued decarbonization through innovation. For example, DFR continues to transition to low-GWP refrigerants and improving product energy efficiency,

(5.2.13) Other environmental issues that your climate transition plan considers

Select all that apply

✓ No other environmental issue considered [Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- Products and services
- ✓ Upstream/downstream value chain
- ✓ Investment in R&D
- Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Products and services

(5.3.1.1) Effect type

Select all that apply

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Dover's commitment to sustainability is reflected in our product strategy, which focuses on helping customers meet their environmental goals, operate more efficiently, and comply with evolving regulations. Our businesses are well-positioned to respond to rising demand for sustainability, safety, and energy efficiency by integrating these priorities into product design and development. We pursue innovation in three key areas: clean technology, resource and material optimization, and enabling the circular economy. These efforts support our science-based target to reduce Scope 3 GHG emissions by 15% by 2030 (from a 2019 baseline), approved in 2021. Achieving this target depends on delivering carbon-efficient products, especially in sectors likely to be impacted by climate policy—such as environmental and waste management, retail fueling, refrigeration and food equipment, packaging, and printing. Over 85% of our 2019 Scope 3 emissions come from product use-phase emissions. Our largest operating companies are actively working to reduce these impacts, supported by quarterly cross-company meetings that share best practices in sustainable product innovation. For example, PSG's EvoClean laundry dispenser uses 85% less energy and 60% less water (3.7 gallons per load) compared to traditional systems. Time Horizon: These initiatives are currently underway and fall within our short-term (0–3 years) strategic horizon.

Upstream/downstream value chain

(5.3.1.1) Effect type

Select all that apply

Risks

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Dover has identified several climate-related risks across its value chain. Our climate scenario analysis highlighted the potential for increased logistics costs due to carbon pricing and the risk of supply chain disruptions from extreme weather events—both of which may warrant further investigation. Our suppliers are expected to comply with environmental regulations, conserve natural resources, and reduce waste and hazardous substances. We also rely on supplier cooperation for environmental reporting and sustainability data. While raw materials are generally available from multiple sources, commodity price volatility—especially for steel, copper, and aluminum—remains a risk. We manage this through fixed-price contracts and global sourcing strategies. Time Horizon: These activities are currently ongoing and fall within our short-term (0–3 years) strategic horizon.

Investment in R&D

(5.3.1.1) Effect type

Select all that apply

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Dover invests in research and development to create innovative products that help customers meet sustainability goals, improve energy efficiency, and comply with evolving environmental standards. These investments also support geographic expansion, competitive differentiation, improved product reliability, and reduced production costs. In 2024, R&D spending—including qualifying engineering costs—represented 1.9% of annual revenue. Our science-based target to reduce Scope 3 GHG emissions by 15% by 2030 (from a 2019 baseline), approved in 2021, guides our innovation strategy, particularly in reducing emissions from the use of sold products. Across segments, R&D efforts are aligned with sustainability and ESG priorities: Imaging & Identification focuses on continuous product innovation to meet customer expectations for performance and cost efficiency, especially in fast-paced markets with short product life cycles. Clean Energy & Fueling develops advanced fueling equipment, IloT-enabled connectivity solutions, and cryogenic components for hydrogen and LNG applications—supporting operational cost reductions and enhanced customer experiences. Pumps & Process Solutions invests in technologies for high-growth markets like single-use biopharma manufacturing and liquid cooling for high-performance electronics, enabling applications in cell and gene therapy and Al-driven data centers. Climate & Sustainability (SWEP) manufactures brazed plate heat exchangers and is expanding its R&D capabilities to deliver low-carbon, energy-efficient heat transfer solutions. Its Passive Cooling Unit uses natural cooling sources with minimal electricity, offering both environmental and cost benefits. Dover also leverages Dover Digital Labs to support digital product innovation. For example, OPW launched the RegO Presto-Link device and app integration in 2024, streamlining propane system testing and enhancing safety through Bluetooth-enabled connectivity. Time Horizon: These initiatives are currently underway and fall within our short-term

Operations

(5.3.1.1) Effect type

Select all that apply

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Dover continues to identify opportunities to improve energy efficiency and transition to renewable energy across its operations. These efforts are guided by our decarbonization roadmap and our science-based target, approved in 2021, to reduce Scope 1 and 2 GHG emissions by 30% by 2030 (from a 2019 baseline). We have been optimizing energy use for years and currently generate renewable energy on-site at several locations. Operating companies are actively pursuing additional opportunities, including fleet electrification and renewable energy sourcing. For example, various operating companies have invested in hybrid fleet vehicles to reduce mobile emissions, and MAAG's production facility in Switzerland is equipped with rooftop solar panels. Our decarbonization roadmap focuses on energy efficiency upgrades, renewable energy procurement, and emissions reductions from mobile sources. These initiatives are supported by internal collaboration and knowledge sharing across operating companies. Time Horizon: These initiatives are currently underway and fall within our short-term (0–3 years) strategic horizon. [Add row]

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

✓ Revenues

(5.3.2.2) Effect type

Select all that apply

Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

✓ Climate change

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Dover operates through five business segments, each focused on building enduring competitive advantages and leadership positions in markets poised for long-term growth. We leverage our strengths in engineering, technology, and design to deliver high-performance, sustainable, and reliable products. This positions us to meet evolving customer needs and capitalize on macroeconomic trends, including rising demand for sustainability. Many of our operating companies are active in sectors likely to be impacted by climate change policies and the transition to a low-carbon economy - such as retail refueling, refrigeration and food equipment, and packaging and printing. A core element of our sustainability strategy is enabling customers to reduce waste and energy use, helping them meet their own sustainability goals through our innovative solutions. As demand for these sustainable products and services grows, we anticipate significant revenue opportunities aligned with our customers' evolving needs.

Row 2

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

Acquisitions and divestments

(5.3.2.2) Effect type

Select all that apply

Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

✓ Climate change

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Dover continues to pursue strategic acquisitions that support its climate transition goals and expand its capabilities in clean energy, resource efficiency, and sustainable innovation. These portfolio decisions are aligned with our science-based targets and broader ESG strategy. A notable example is the 2024 acquisition of Marshall Excelsior Company (MEC), a provider of mission-critical cryogenic and flow control components for liquefied petroleum gas and other industrial gases. MEC joined Dover's Clean Energy & Fueling segment and enhances our offerings in cryogenic storage, transportation, and remote monitoring - key technologies supporting the transition to low-carbon fuels.

[Add row]

(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?

Identification of spending/revenue that is aligned with your organization's climate transition
Select from: ☑ No, and we do not plan to in the next two years

[Fixed row]

(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

(5.5.1) Investment in low-carbon R&D

Select from:

Yes

(5.5.2) Comment

Dover actively invests in R&D to develop low-carbon products and services that align with our sector activities and support our customers' sustainability goals. These investments are a core part of our strategy to deliver energy-efficient, resource-optimized, and climate-beneficial solutions across our portfolio. In 2024, R&D

spending, including qualifying engineering costs, represented 1.9% of annual revenue, consistent with historical levels and reflecting our sustained commitment to innovation. Our R&D priorities are shaped by customer demand for safer, more efficient, and environmentally responsible products, as well as our science-based target to reduce Scope 3 emissions by 15% by 2030. Across our segments, we are advancing technologies that support the climate transition: Clean Energy & Fueling invests in alternative fuel dispensing equipment, IIoT-enabled connectivity platforms, and cryogenic components for hydrogen and LNG applications—helping customers reduce emissions and improve operational efficiency. Pumps & Process Solutions develops products for high-growth markets such as single-use biopharma manufacturing and liquid cooling for high-performance electronics, supporting decarbonization in healthcare and data infrastructure. Climate & Sustainability (SWEP) focuses on low-carbon heat transfer solutions, including its Passive Cooling Unit, which uses natural cooling sources with minimal electricity. SWEP is also building a new R&D center to expand innovation in energy-efficient technologies. Digital Innovation is supported by Dover Digital Labs, which enables smart product development. For example, OPW launched the RegO Presto-Link device and app integration in 2024, enhancing safety and efficiency in propane system testing. These R&D efforts are integral to our decarbonization roadmap and our long-term strategy to deliver sustainable growth through climate-aligned innovation.

[Fixed row]

(5.5.2) Provide details of your organization's investments in low-carbon R&D for capital goods products and services over the last three years.

Row 1

(5.5.2.1) Technology area

Select from:

☑ Hydrogen power

(5.5.2.2) Stage of development in the reporting year

Select from:

✓ Full/commercial-scale demonstration

(5.5.2.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

Dover Precision Components announced the official opening of its Innovation Lab in Houston, Texas. The lab was built to centralize test rigs for fluid film bearings and compression products. Dover Precision Components' research and product development teams are focused on developing innovative new products and technologies that support a more sustainable future, including the upcoming installation of a hydrogen testing facility for performance materials that enable the transition to hydrogen power.

(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

(5.9.1) Water-related CAPEX (+/- % change)

0

(5.9.2) Anticipated forward trend for CAPEX (+/- % change)

0

(5.9.3) Water-related OPEX (+/- % change)

0

(5.9.4) Anticipated forward trend for OPEX (+/- % change)

0

(5.9.5) Please explain

Dover has conducted a CSRD-aligned double materiality assessment and determined that water-related dependencies, impacts, risks, and opportunities are not material within Dover's direct operations and its upstream value chain. Water-related capital and operating expenditure is not tracked centrally but operating companies do continue to track water usage and conduct water-related projects.

[Fixed row]

(5.10) Does your organization use an internal price on environmental externalities?

(5.10.1) Use of internal pricing of environmental externalities

Select from:

✓ No, and we do not plan to in the next two years

(5.10.3) Primary reason for not pricing environmental externalities

Select from:

✓ Not an immediate strategic priority

(5.10.4) Explain why your organization does not price environmental externalities

We recognize the complexity and potential uncertainty associated with setting an internal price on carbon. For example, we recognize the challenge of establishing a price that accurately reflects the environmental impact of our emissions, without hampering business operations. Consequently, we have chosen to focus our efforts on concrete, immediate actions that align with our carbon reduction targets. By investing in the transition to cleaner fuels, expanding our use of renewable energy, and enhancing the energy efficiency of our operations, we are making measurable progress toward our decarbonization goals. These direct initiatives allow us to reduce our carbon footprint effectively and demonstrate our commitment to environmental stewardship without the need for an internal carbon pricing strategy at this time.

[Fixed row]

(5.11) Do you engage with your value chain on environmental issues?

	Engaging with this stakeholder on environmental issues	Environmental issues covered
Suppliers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water
Customers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water
Investors and shareholders	Select from:	Select all that apply

	Engaging with this stakeholder on environmental issues	Environmental issues covered
	✓ Yes	✓ Climate change✓ Water
Other value chain stakeholders	Select from: ✓ Yes	Select all that apply ☑ Climate change ☑ Water

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

	Assessment of supplier dependencies and/or impacts on the environment
Climate change	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years
Water	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years

[Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

☑ No, we do not prioritize which suppliers to engage with on this environmental issue

(5.11.2.3) Primary reason for no supplier prioritization on this environmental issue

Select from:

☑ We engage with all suppliers

(5.11.2.4) Please explain

Dover recognizes the importance of addressing climate change and water sustainability as part of its comprehensive supply chain management strategy. Dover takes a holistic approach, evaluating all suppliers and working collaboratively with its entire supplier network to drive improvements in environmental performance across the board. Dover's Supplier Code of Conduct, for example, requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, all suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess compliance with the Supplier Code of Conduct, including on environmental matters.

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

☑ No, we do not prioritize which suppliers to engage with on this environmental issue

(5.11.2.3) Primary reason for no supplier prioritization on this environmental issue

Select from:

We engage with all suppliers

(5.11.2.4) Please explain

Dover recognizes the importance of addressing climate change and water sustainability as part of its comprehensive supply chain management strategy. Dover takes a holistic approach, evaluating all suppliers and working collaboratively with its entire supplier network to drive improvements in environmental performance across the board. Dover's Supplier Code of Conduct, for example, requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, all suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess compliance with the Supplier Code of Conduct, including on environmental matters.

[Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Dover's Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover's suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its

authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover's business needs.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Dover's Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover's suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover's business needs.

[Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Other, please specify :Complying with Dover Code of Conduct

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

100%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

☑ 100%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

☑ 100%

(5.11.6.12) Comment

Dover's Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover's suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the

supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover's business needs. Additionally, one of our OpCos require suppliers to comply with environmental certification ISO14001.

Water

(5.11.6.1) Environmental requirement

Select from:

☑ Other, please specify :Complying with regulatory requirements

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

☑ 100%

(5.11.6.12) Comment

Dover's Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover's suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its

authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover's business needs.

[Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ Emissions reduction

(5.11.7.3) Type and details of engagement

Information collection

☑ Collect GHG emissions data at least annually from suppliers

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 1-25%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

✓ 1-25%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

One of our Operating Companies has added specific sustainability questions to their supplier audit process, focused on emissions tracking, target-setting, and resource management, to help inform procurement decisions.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ No other supplier engagement

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ No, this engagement is unrelated to meeting an environmental requirement [Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

☑ Share information about your products and relevant certification schemes

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 1-25%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

☑ 1-25%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

While many Dover products enhance our customers climate change performance and strategy, the products in our Climate & Sustainability Technologies Segment have some of the most significant energy and carbon efficiency properties. Dover's product and sales teams engage with customers in this segment regarding product features and relevant certification schemes. The Climate & Sustainability Technologies Segment represents 20% of Dover's 2024 revenue, therefore we are estimating 20% of customers for engagement and 20% of Scope 3 emissions. This estimate is likely low since it does not account for engagement strategies in Dover's other segments for energy and carbon efficient products. For example, our Dover Fueling Solutions business also collaborates closely with customers and derives revenue from climate-related product innovation. Dover's companies also display sustainability certifications, eco-labels, and information about sustainable production processes on product labels and packaging to help its customers make informed buying choices. Finally, Dover's corporate center communicates its sustainability strategy through various online platforms, such as its website and annual sustainability reporting.

(5.11.9.6) Effect of engagement and measures of success

Dover measures success of customer engagement through sales of its products. The Refrigeration and Food Equipment Segment represents 20% of Dover's revenue in 2024.

Water

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

☑ Share information about your products and relevant certification schemes

Innovation and collaboration

☑ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 1-25%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Dover is committed to developing products designed to help customers meet their sustainability goals in response to evolving regulatory and environmental standards. Our operating company leaders and their respective teams are in regular contact with customers and regularly assess customer needs, including with respect to water efficiency, wastewater treatment, and other sustainability-related efforts, to develop products that can help meet those needs.

(5.11.9.6) Effect of engagement and measures of success

We believe sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. For example, Pump Solution Group's pumps have helped strengthen water treatment operations for the many chemical-metering processes involved to help customers deliver the cleanest water possible. The success of our customer engagement is ultimately reflected in the value we create for shareholders by understanding and addressing the needs of our customers and capitalizing on opportunities to strengthen our relationships with them.

[Add row]

(5.13) Has your organization already implemented any mutually beneficial environmental initiatives due to CDP Supply Chain member engagement?

(5.13.1) Environmental initiatives implemented due to CDP Supply Chain member engagement

Select from:

✓ No, and we do not plan to within the next two years

(5.13.2) Primary reason for not implementing environmental initiatives

Select from:

✓ Not an immediate strategic priority

(5.13.3) Explain why your organization has not implemented any environmental initiatives

At present, Dover has made the decision to prioritize the reduction of our operational emissions and emissions within our immediate control and influence. This is because our operational emissions have been on an upward trend, and we believe it is important to address our direct impact on the environment.

[Fixed row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

Climate change

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

Dover defines its organizational boundaries using the control approach where we account for GHG emissions at operations that fall under the direct operational control of the business in our scope 1 and 2 inventory. Under this approach, Dover accounts for 100% of its GHG emissions from its operations and the operations of its Operating Companies, where Dover has full authority to introduce and implement its operating policies.

Water

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

This approach aligns with Dover's method of defining organizational boundaries, where water usage is accounted for in all operations that fall under the direct operational control of the business. By adopting this method, Dover takes responsibility for 100% of the water withdrawal and consumption across its operations and those of its Operating Companies.

Plastics

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

This approach aligns with Dover's method of defining organizational boundaries, where plastics data is accounted for in all operations that fall under the direct operational control of the business. By adopting this method, Dover takes responsibility for 100% of plastics consumption and waste across its operations and those of its Operating Companies.

Biodiversity

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

This approach aligns with Dover's method of defining organizational boundaries, where biodiversity data is accounted for in all operations that fall under the direct operational control of the business. By adopting this method, Dover takes responsibility for 100% of biodiversity impacts across its operations and those of its Operating Companies.

[Fixed row]

- **C7. Environmental performance Climate Change**
- (7.1) Is this your first year of reporting emissions data to CDP?

Select from:

V No

(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

(7.1.1.1) Has there been a structural change?

Select all that apply

- ✓ Yes, an acquisition
- ✓ Yes, a divestment

(7.1.1.2) Name of organization(s) acquired, divested from, or merged with

We completed the following acquisitions in calendar year 2024: Criteria Labs; SPS Cryogenics B.V. and Special Gas Systems B.V.; Marshall Excelsior Company, Demaco Holland B.V.; Bulloch Technologies; Transchem Group; and Pharmacontrol Electronic GmbH. We completed the following divestitures in calendar year 2024: Destaco and Environmental Solutions Group.

(7.1.1.3) Details of structural change(s), including completion dates

All acquisitions and divestitures were completed in 2024 [Fixed row]

(7.1.2) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

(7.1.2.1) Change(s) in methodology, boundary, and/or reporting year definition?

Select all that apply

✓ Yes, a change in methodology

(7.1.2.2) Details of methodology, boundary, and/or reporting year definition change(s)

Dover's emission measurement practices have improved over the years, leading to more complete and higher emission figures. Most of these improvements stem from calculating emissions from previously unaccounted sites which mean that emissions are expected to increase for the baseline year and subsequent years. For example, we now estimate emissions for all sites, whereas in previous years we excluded sites with less than 10 employees from our boundary. [Fixed row]

(7.1.3) Have your organization's base year emissions and past years' emissions been recalculated as a result of any changes or errors reported in 7.1.1 and/or 7.1.2?

(7.1.3.1) Base year recalculation

Select from:

☑ No, because we do not have the data yet and plan to recalculate next year

(7.1.3.3) Base year emissions recalculation policy, including significance threshold

We adhere to the guidance of the Science Based Targets initiative, which recommends that companies re-baseline their emissions when significant changes occur due to structural adjustments or methodological updates—defined as a change of approximately 5% in emissions. In line with this guidance, we completed two large divestitures in 2024 and plan to re-baseline our emissions next year accordingly.

(7.1.3.4) Past years' recalculation

Select from:

✓ No

[Fixed row]

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

- ☑ The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- ☑ The Greenhouse Gas Protocol: Scope 2 Guidance
- ☑ The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard
- (7.3) Describe your organization's approach to reporting Scope 2 emissions.

(7.3.1) Scope 2, location-based

Select from:

☑ We are reporting a Scope 2, location-based figure

(7.3.2) Scope 2, market-based

Select from:

☑ We are reporting a Scope 2, market-based figure

(7.3.3) Comment

Our market-based figure takes into account our operations where we do have contractual instruments as well as utility-specific emissions factors where available [Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

✓ No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

57601

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019. We conducted a full re-baseline of 2019 scope 1 and 2 data to adjust for (1) structural changes (e.g., acquisitions and divestitures) and (2) improved data collection methodologies. Our methodology for calculating the 2019 data was aligned with our 2023 methodology to ensure a consistent and comparable analysis.

Scope 2 (location-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

137975

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019. We conducted a full re-baseline of 2019 scope 1 and 2 data to adjust for (1) structural changes (e.g., acquisitions and divestitures) and (2) improved data collection methodologies. Our methodology for calculating the 2019 data was aligned with our 2023 methodology to ensure a consistent and comparable analysis.

Scope 2 (market-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

152832

(7.5.3) Methodological details

As part of our full re-baseline of 2019 scope 1 and 2 data to adjust for (1) structural changes (e.g., acquisitions and divestitures) and (2) improved data collection methodologies, we also calculated our marker-based emissions for the first time. Our methodology for calculating the 2019 data was aligned with our 2023 methodology to ensure a consistent and comparable analysis.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

1029634.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 2: Capital goods

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

31461.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

21589.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

223516.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

8341.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 6: Business travel

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

27509.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

(7.5.2) Base year emissions (metric tons CO2e)

40013.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable to Dover

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

238790.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

1.3

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

15234746

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

(7.5.2) Base year emissions (metric tons CO2e)

444770.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable to Dover

Scope 3 category 14: Franchises

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Scope 3 category 15: Investments

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

92687.0

(7.5.3) Methodological details

Dover's 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021 for Scope 1, 2, and 3 emissions. Our base year for the targets is 2019.

Scope 3: Other (upstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable to Dover

Scope 3: Other (downstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable to Dover [Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

50757

(7.6.3) Methodological details

Our steps for calculating emissions are noted below: 1. We started by identifying all direct GHG emission sources within our organization and the type of fuel. This included all sources we owned or controlled that released GHGs as a result of our activities. 2. After identifying the sources, we collected data (e.g., from invoices) from our operating companies on the amount of fuel consumed by these sources. 3. For sources where we lacked data, we estimated emissions using the Commercial Buildings Energy Consumption Survey (CBECS) intensity factors. These factors provide average energy consumption data for different types of commercial buildings and allowed us to estimate emissions based on the size and type of facility we operate. 4. We then selected emission factors from national or international environmental agencies, such as the Environmental Protection Agency (EPA). With the activity data, estimated data, and the appropriate emission factors, we calculated our Scope 1 emissions. We performed this calculation for each identified source of GHG emissions. For example, for fuel combustion, the activity data was the quantity of fuel consumed, and the emission factor was the GHG emissions per unit of fuel. 7. We had our Scope 1 emissions calculations verified by a third party to ensure accuracy and credibility. [Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

114464

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

129263

(7.7.4) Methodological details

Our steps for calculating emissions are noted below: 1. We identified all the purchased energy that was used across our facilities. This included electricity, district heating, cooling, and steam that we did not generate ourselves but procured from external suppliers. 2. After identifying the sources, we collected data (e.g., from utility bills and purchase agreements) from our operating companies on the amount of purchased electricity consumed by these sources. 3. For sources where we lacked data, we estimated emissions using the Commercial Buildings Energy Consumption Survey (CBECS) intensity factors. 4. We selected emission factors for each type of purchased energy from national or international environmental agencies, such as the Environmental Protection Agency (EPA). We are calculating both market-based and location-based emissions so we used factors that reflect the average emissions intensity of the grid on which our energy consumption occurs (location-based) and emission factors that correspond to our contractual instrument (market-based). 5. With the consumption data, estimated data, and the appropriate emission factors, we calculated our Scope 2 market and location-based emissions. We performed this calculation separately for each type of purchased energy. 7. We then aggregated the calculated emissions from all types of purchased energy to determine our total Scope 2 emissions. This gave us a comprehensive view of the indirect emissions resulting from our energy consumption. 7. We had our Scope 2 emissions calculations verified by a third party to ensure accuracy and credibility.

[Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

733607

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Dover used supplier spend data from internal data systems, bills of materials, and purchasing records to calculate emissions from purchased goods and services using the spend-based method.

Capital goods

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

28186

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Dover used supplier spend data from internal data systems, bills of materials, and purchasing records to calculate emissions from purchased goods and services using the spend-based method.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

23433

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Supplier-specific method
- ☑ Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Upstream emissions from purchased fuels and electricity were calculated in 2019 using Scope 1 and 2 data—specifically, the amount of fuel used and electricity bought. These quantities were multiplied by emission factors for upstream energy and transmission & distribution (T&D) losses. Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

133062

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Emissions were calculated using a spend-based method, which applies cradle-to-gate emission factors to Dover's actual spend on third-party services.

Waste generated in operations

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

3755

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Emissions were calculated using a spend-based method, which applies cradle-to-gate emission factors to Dover's actual spend on third-party services.

Business travel

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

29858

(7.8.3) Emissions calculation methodology

Select all that apply

- ☑ Supplier-specific method
- ☑ Hybrid method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Business travel emissions included hotel stays, rental cars, rail, and air travel, with activity data provided by Dover's travel provider in 2019. Emissions were calculated using standard methodologies and emission factors from DEFRA, EPA, and Climate Leaders guidance. Air travel emissions were based on mileage by

flight distance (short, medium, long-haul), and hotel emissions were based on nights stayed by category and location. Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Employee commuting

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

43430

(7.8.3) Emissions calculation methodology

Select all that apply

- Hybrid method
- Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Commuting emissions were calculated in 2019 using total employee headcount by location. An average emission factor (kg CO₂e per employee per year) was applied, based on a large U.S. commuter study using USDOT data and transportation mode assumptions. Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Upstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Using the operational control approach, Dover determined that all spaces leased from other entities are within our operational control. As such, emissions from these sources are included in our Scope 1 and 2 emissions.

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

259185

(7.8.3) Emissions calculation methodology

Select all that apply

- ☑ Hybrid method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Where available, Dover used average product weight and estimated freight modes based on the Freight Analysis Framework. Emissions in 2019 were calculated by multiplying shipment distance by weight (ton-miles) and applying EPA emission factors. Global Warming Potentials (GWPs) were based on the IPCC Fourth Assessment Report (AR4). Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Processing of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

1

(7.8.3) Emissions calculation methodology

Select all that apply

- Hybrid method
- ✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Emissions from processing sold products were estimated in 2019 using sales data for intermediate goods and average electricity use per item, based on a representative machine. Total electricity use was multiplied by products sold, and EPA grid emission factors were applied. Global Warming Potentials (GWPs) were based on the IPCC Fourth Assessment Report (AR4). Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Use of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

(7.8.3) Emissions calculation methodology

Select all that apply

- ☑ Hybrid method
- ✓ Average product method
- ☑ Methodology for direct use phase emissions, please specify :Activity-based calculations using product-specific data

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

To calculate use-phase emissions, data was collected for total products sold by each Dover entity, Activity-based calculations were performed using product-specific data such as: Units sold, Electricity consumption, Product lifespan, Refrigerant usage, and emission factors from sources like the US EPA GHG Emission Factors. Extrapolation based on revenue were used for Operating Companies with energy-consuming products that lack detailed data. These are estimated using 2019 baseline emissions scaled by revenue change.

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

482757

(7.8.3) Emissions calculation methodology

Select all that apply

Hybrid method

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

End-of-life emissions were estimated using 2019 landfill diversion rates provided by Dover's Operating Companies, including the percentage of products landfilled, recycled, composted, or incinerated. Emissions were calculated using the EPA's Waste Reduction Model (WARM), which includes life cycle impacts and long-term decomposition. Global Warming Potentials (GWPs) were based on the IPCC Fourth Assessment Report (AR4). Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Downstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Dover does not lease space to other entities

Franchises

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Dover does not have any franchises.

Investments

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

100603

(7.8.3) Emissions calculation methodology

Select all that apply

- Hybrid method
- ✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Investment emissions were estimated for companies where Dover held more than 1% equity, using ownership share, industry type, and EPA commodity-based emission factors. Environmentally-Extended Input-Output (EEIO) factors were applied based on spend category. Global Warming Potentials (GWPs) were based on the IPCC Fourth Assessment Report (AR4). Note: This category was calculated for the 2019 calendar year and estimated in later years based on changes in revenue.

Other (upstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Dover has no other upstream Scope 3 emissions.

Other (downstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Dover has no other downstream Scope 3 emissions [Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ☑ Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ✓ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Select from:

Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Moderate assurance

(7.9.1.4) Attach the statement

Dover 2024 AA1000 Assurance Statement.pdf

(7.9.1.5) Page/section reference

Page 1

(7.9.1.6) Relevant standard

Select from:

✓ AA1000AS

(7.9.1.7) Proportion of reported emissions verified (%)

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Moderate assurance

(7.9.2.5) Attach the statement

Dover 2024 AA1000 Assurance Statement.pdf

(7.9.2.6) Page/ section reference

(7.9.2.7) Relevant standard

Select from:

✓ AA1000AS

(7.9.2.8) Proportion of reported emissions verified (%)

100

Row 2

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 market-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Moderate assurance

(7.9.2.5) Attach the statement

(7.9.2.6) Page/ section reference

Page 1

(7.9.2.7) Relevant standard

Select from:

✓ AA1000AS

(7.9.2.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

✓ Scope 3: Use of sold products

(7.9.3.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.3.3) Status in the current reporting year

Select from:

Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Moderate assurance

(7.9.3.5) Attach the statement

Dover 2024 AA1000 Assurance Statement.pdf

(7.9.3.6) Page/section reference

Page 1

(7.9.3.7) Relevant standard

Select from:

✓ AA1000AS

(7.9.3.8) Proportion of reported emissions verified (%)

88

[Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

✓ Increased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

26

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

0.02

(7.10.1.4) Please explain calculation

This estimate reflects a conservative calculation of emissions reductions from a subset of projects implemented across Dover's operating companies during the current calendar year. It is not a comprehensive inventory of all emissions reduction initiatives. Dover maintains an internal tracker with dozens of projects actively monitored by our businesses and we plan to continue to improve our data collection for these projects.

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Mergers

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Change in output

(7.10.1.1) Change in emissions (metric tons CO2e)

8157

(7.10.1.2) Direction of change in emissions

Select from:

✓ Increased

(7.10.1.3) Emissions value (percentage)

4.8

(7.10.1.4) Please explain calculation

Dover's emissions increase is estimated based off of our revenue increase. Dover's revenue increased by 0.8% from 2023 to 2024, of which we assume 60% is an increase in output, resulting in an added 8,157 mtCO2e.

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

1956

(7.10.1.2) Direction of change in emissions

Select from:

✓ Increased

(7.10.1.3) Emissions value (percentage)

1.15

(7.10.1.4) Please explain calculation

In 2024, Dover continued to improve the accuracy and completeness of its GHG emissions reporting through enhanced data collection and refined methodologies. This is part of an ongoing effort to build a more comprehensive and representative emissions inventory, consistent with common industry practices. Over the past year, we have deepened our understanding of our site footprint, the nature of emissions associated with different operations, and the processes required for efficient and effective consolidated reporting. As an example of this refinement, in prior years we excluded sites with fewer than 10 employees from our organizational boundary. In 2024, we have expanded our boundary to include these smaller sites, reflecting our commitment to more precise and inclusive emissions accounting. While this change may not significantly impact total reported emissions, it demonstrates our continued progress toward methodological rigor. We will continue to assess whether such refinements warrant a baseline adjustment in future reporting cycles.

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

2

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Change in physical operating conditions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows.

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Not applicable. Other reasons for our changes in gross global emissions as described in the other rows. [Fixed row]

(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Select from:

☑ Market-based

(7.11) How do your total Scope 3 emissions for the reporting year compare to those of the previous reporting year?

Select from:

✓ Decreased

(7.11.1) For each Scope 3 category calculated in 7.8, specify how your emissions compare to the previous year and identify the reason for any change.

Purchased goods and services

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

✓ Other, please specify :Change in spend

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

217022

(7.11.1.4) % change in emissions in this category

23

(7.11.1.5) Please explain

Dover's Scope 3 Category 1 and 2 emissions decreased between 2023 and 2024 due to a reduction in sourceable spend over that period.

Capital goods

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

✓ Other, please specify :Change in spend

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

7356

(7.11.1.4) % change in emissions in this category

21

(7.11.1.5) Please explain

Dover's Scope 3 Category 1 and 2 emissions decreased between 2023 and 2024 due to a reduction in sourceable spend over that period.

Fuel and energy-related activities (not included in Scopes 1 or 2)

(7.11.1.1) Direction of change

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

2094

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Upstream transportation and distribution

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Change in methodology

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

(7.11.1.4) % change in emissions in this category

50

(7.11.1.5) Please explain

This category was calculated in 2024 using a spend-based method, rather than a revenue-based extrapolation method.

Waste generated in operations

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Change in methodology

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

6108

(7.11.1.4) % change in emissions in this category

62

(7.11.1.5) Please explain

This category was calculated in 2024 using a spend-based method, rather than a revenue-based extrapolation method.

Business travel

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

2669

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Employee commuting

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

✓ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

3882

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Downstream transportation and distribution

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

23162

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Processing of sold products

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

1

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Use of sold products

(7.11.1.1) Direction of change

Select from:

✓ Decreased

(7.11.1.2) Primary reason for change

Select from:

✓ Divestment

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

1714973

(7.11.1.4) % change in emissions in this category

11

(7.11.1.5) Please explain

This reduction is primarily attributable to the divestiture in 2024 of one of our largest operating companies, which had significant emissions associated with the Use of Sold Products category.

End-of-life treatment of sold products

(7.11.1.1) Direction of change

Select from:

✓ Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

43143

(7.11.1.4) % change in emissions in this category

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

Investments

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

☑ Other, please specify :Change in revenue

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

8991

(7.11.1.4) % change in emissions in this category

8

(7.11.1.5) Please explain

This category was estimated for the 2024 calendar year based on changes in revenue. Dover's revenue declined by 8% from 2023 to 2024, so we applied that same 8% decrease to the 2023 Scope 3 category emissions to estimate the 2024 values.

[Fixed row]

(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?

Select from: ☑ No
(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Select from: ✓ Yes
(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP).
Row 1
(7.15.1.1) Greenhouse gas
Select from: ☑ CO2
(7.15.1.2) Scope 1 emissions (metric tons of CO2e)
46741.18
(7.15.1.3) GWP Reference
Select from: ☑ IPCC Sixth Assessment Report (AR6 - 100 year)
Row 2
(7.15.1.1) Greenhouse gas
Select from:

✓ N20

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

77.28

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Sixth Assessment Report (AR6 - 100 year)

Row 3

(7.15.1.1) **Greenhouse** gas

Select from:

✓ CH4

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

54.47

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Sixth Assessment Report (AR6 - 100 year)

Row 4

(7.15.1.1) Greenhouse gas

Select from:

✓ HFCs

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

3883.68

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Sixth Assessment Report (AR6 - 100 year)
[Add row]

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

Argentina

(7.16.1) Scope 1 emissions (metric tons CO2e)

43.05

(7.16.2) Scope 2, location-based (metric tons CO2e)

28.21

(7.16.3) Scope 2, market-based (metric tons CO2e)

28.21

Australia

(7.16.1) Scope 1 emissions (metric tons CO2e)

186.17

(7.16.2) Scope 2, location-based (metric tons CO2e)

1213.55

(7.16.3) Scope 2, market-based (metric tons CO2e)

1488.63

Austria

(7.16.1) Scope 1 emissions (metric tons CO2e) 0.01 (7.16.2) Scope 2, location-based (metric tons CO2e) 0.02 (7.16.3) Scope 2, market-based (metric tons CO2e) 0.02 **Belgium** (7.16.1) Scope 1 emissions (metric tons CO2e) 152.29 (7.16.2) Scope 2, location-based (metric tons CO2e) 74.87 (7.16.3) Scope 2, market-based (metric tons CO2e) 84.45 **Brazil** (7.16.1) Scope 1 emissions (metric tons CO2e) 345.79 (7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)

279.15

Canada

(7.16.1) Scope 1 emissions (metric tons CO2e)

680.51

(7.16.2) Scope 2, location-based (metric tons CO2e)

382.78

(7.16.3) Scope 2, market-based (metric tons CO2e)

382.78

China

(7.16.1) Scope 1 emissions (metric tons CO2e)

2999.39

(7.16.2) Scope 2, location-based (metric tons CO2e)

20656.83

(7.16.3) Scope 2, market-based (metric tons CO2e)

20656.83

Czechia

(7.16.1) Scope 1 emissions (metric tons CO2e)
14.45
(7.16.2) Scope 2, location-based (metric tons CO2e)
11.01
(7.16.3) Scope 2, market-based (metric tons CO2e)
16.47
Denmark
(7.16.1) Scope 1 emissions (metric tons CO2e)
393.17
(7.16.2) Scope 2, location-based (metric tons CO2e)
235.12
(7.16.3) Scope 2, market-based (metric tons CO2e)
1378.5
Dominican Republic
(7.16.1) Scope 1 emissions (metric tons CO2e)
o
(7.16.2) Scope 2, location-based (metric tons CO2e)

239.89

(7.16.3) Scope 2, market-based (metric tons CO2e)
239.89
Finland
(7.16.1) Scope 1 emissions (metric tons CO2e)
o
(7.16.2) Scope 2, location-based (metric tons CO2e)
o
(7.16.3) Scope 2, market-based (metric tons CO2e)
0.01
France
(7.16.1) Scope 1 emissions (metric tons CO2e)
1554.58
(7.16.2) Scope 2, location-based (metric tons CO2e)
383.95
(7.16.3) Scope 2, market-based (metric tons CO2e)
244.06
Germany
(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e) 2496.42 (7.16.3) Scope 2, market-based (metric tons CO2e) 3015.67 India (7.16.1) Scope 1 emissions (metric tons CO2e) 1026.76 (7.16.2) Scope 2, location-based (metric tons CO2e) 4936.65 (7.16.3) Scope 2, market-based (metric tons CO2e) 4936.65 Italy (7.16.1) Scope 1 emissions (metric tons CO2e) 5171.87 (7.16.2) Scope 2, location-based (metric tons CO2e) 5463.69

(7.16.3) Scope 2, market-based (metric tons CO2e)

Japan

(7.16.1) Scope 1 emissions (metric tons CO2e)

88.23

(7.16.2) Scope 2, location-based (metric tons CO2e)

1203.37

(7.16.3) Scope 2, market-based (metric tons CO2e)

1203.37

Luxembourg

(7.16.1) Scope 1 emissions (metric tons CO2e)

5.36

(7.16.2) Scope 2, location-based (metric tons CO2e)

4.84

(7.16.3) Scope 2, market-based (metric tons CO2e)

18.26

Malaysia

(7.16.1) Scope 1 emissions (metric tons CO2e)

129.6

(7.16.2) Scope 2, location-based (metric tons CO2e)
2643.39
(7.16.3) Scope 2, market-based (metric tons CO2e)
2567.66
Mexico
(7.16.1) Scope 1 emissions (metric tons CO2e)
404.85
(7.16.2) Scope 2, location-based (metric tons CO2e)
1631.59
(7.16.3) Scope 2, market-based (metric tons CO2e)
1631.59
Netherlands
(7.16.1) Scope 1 emissions (metric tons CO2e)
237.63
(7.16.2) Scope 2, location-based (metric tons CO2e)
347.5
(7.16.3) Scope 2. market-based (metric tons CO2e)

462.73

Norway

(7.16.1) Scope 1 emissions (metric tons CO2e)

0

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0.1

Philippines

(7.16.1) Scope 1 emissions (metric tons CO2e)

56.16

(7.16.2) Scope 2, location-based (metric tons CO2e)

395.75

(7.16.3) Scope 2, market-based (metric tons CO2e)

395.75

Poland

(7.16.1) Scope 1 emissions (metric tons CO2e)

159.04

(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)

250.65

Republic of Korea

(7.16.1) Scope 1 emissions (metric tons CO2e)

0

(7.16.2) Scope 2, location-based (metric tons CO2e)

0.07

(7.16.3) Scope 2, market-based (metric tons CO2e)

0.07

Romania

(7.16.1) Scope 1 emissions (metric tons CO2e)

19.86

(7.16.2) Scope 2, location-based (metric tons CO2e)

52.32

(7.16.3) Scope 2, market-based (metric tons CO2e)

40.15

Russian Federation

(7.16.1) Scope 1 emissions (metric tons CO2e)
23.37
(7.16.2) Scope 2, location-based (metric tons CO2e)
38.51
(7.16.3) Scope 2, market-based (metric tons CO2e)
38.51
Singapore
(7.16.1) Scope 1 emissions (metric tons CO2e)
29.56
(7.16.2) Scope 2, location-based (metric tons CO2e)
123.28
(7.16.3) Scope 2, market-based (metric tons CO2e)
123.38
Slovakia
(7.16.1) Scope 1 emissions (metric tons CO2e)
475.76
(7.16.2) Scope 2, location-based (metric tons CO2e)

1331.18

(7.16.3) Scope 2, market-based (metric tons CO2e)
10.71
Spain
(7.16.1) Scope 1 emissions (metric tons CO2e)
366.76
(7.16.2) Scope 2, location-based (metric tons CO2e)
72.43
(7.16.3) Scope 2, market-based (metric tons CO2e)
81.35
Sweden
(7.16.1) Scope 1 emissions (metric tons CO2e)
220.04
(7.16.2) Scope 2, location-based (metric tons CO2e)
288.35
(7.16.3) Scope 2, market-based (metric tons CO2e)
268.3
Switzerland
(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e) 70.99 (7.16.3) Scope 2, market-based (metric tons CO2e) 66.99 Taiwan, China (7.16.1) Scope 1 emissions (metric tons CO2e) 46.77 (7.16.2) Scope 2, location-based (metric tons CO2e) 66.99 (7.16.3) Scope 2, market-based (metric tons CO2e) 66.99 **Thailand** (7.16.1) Scope 1 emissions (metric tons CO2e) 505.28 (7.16.2) Scope 2, location-based (metric tons CO2e) 572.59

(7.16.3) Scope 2, market-based (metric tons CO2e)

Turkey

(7.16.1) Scope 1 emissions (metric tons CO2e)

1.72

(7.16.2) Scope 2, location-based (metric tons CO2e)

5.19

(7.16.3) Scope 2, market-based (metric tons CO2e)

5.19

United Arab Emirates

(7.16.1) Scope 1 emissions (metric tons CO2e)

2.51

(7.16.2) Scope 2, location-based (metric tons CO2e)

10.01

(7.16.3) Scope 2, market-based (metric tons CO2e)

10.01

United Kingdom of Great Britain and Northern Ireland

(7.16.1) Scope 1 emissions (metric tons CO2e)

1406.64

(7.16.2) Scope 2, location-based (metric tons CO2e)

1164.39

(7.16.3) Scope 2, market-based (metric tons CO2e)

2353.52

United States of America

(7.16.1) Scope 1 emissions (metric tons CO2e)

31295.75

(7.16.2) Scope 2, location-based (metric tons CO2e)

67837.57

(7.16.3) Scope 2, market-based (metric tons CO2e)

77596.25 [Fixed row]

(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

Select all that apply

- ☑ By business division
- ☑ By activity

(7.17.1) Break down your total gross global Scope 1 emissions by business division.

	Business division	Scope 1 emissions (metric ton CO2e)
Row 1	Engineered Products	15371.27
Row 2	Imaging & Identification	8294.96
Row 3	Clean Energy & Fueling	7974.78
Row 4	Climate & Sustainability Technologies	10759.54
Row 5	Pumps & Process Solutions	7493.42
Row 6	Dover Corporate	862.64

[Add row]

(7.17.3) Break down your total gross global Scope 1 emissions by business activity.

	Activity	Scope 1 emissions (metric tons CO2e)
Row 1	Refrigerants	3909.95
Row 2	Mobile sources	11702.49
Row 3	Stationary Combustion	35144.17

[Add row]

(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

Select all that apply

☑ By business division

☑ By activity

(7.20.1) Break down your total gross global Scope 2 emissions by business division.

	Business division	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Row 1	Engineering Products	28926	37498
Row 2	Imaging & Identification	5994	6960
Row 3	Pumps & Process Solutions	20659	22821
Row 4	Clean Energy & Fueling	26084	29253
Row 5	Corporate	4996	5043
Row 6	Climate & Sustainability Technologies	27804	27688

[Add row]

(7.20.3) Break down your total gross global Scope 2 emissions by business activity.

	Activity	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Row 1	Purchased Electricity	114300.7	129099.851
Row 2	District Heating	163.13	163.13

[Add row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

50757

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

114464

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

129263

(7.22.4) Please explain

Dover is currently focusing on calculating emissions exclusively at the consolidated group level, a strategic approach as we navigate through the complexities of new regulations such as the Corporate Sustainability Reporting Directive (CSRD). Once global regulations have been finalized, we will refresh our scoping analysis to thoroughly understand the implications of reporting at different entity levels for the CSRD and other relevant regulations, enabling us to make an informed decision regarding the most appropriate legal entity level for future emissions reporting.

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

0

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

0

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

(7.22.4) Please explain

Dover is currently focusing on calculating emissions exclusively at the consolidated group level, a strategic approach as we navigate through the complexities of new regulations such as the Corporate Sustainability Reporting Directive (CSRD). Once global regulations have been finalized, we will refresh our scoping analysis to thoroughly understand the implications of reporting at different entity levels for the CSRD and other relevant regulations, enabling us to make an informed decision regarding the most appropriate legal entity level for future emissions reporting.

[Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

✓ No

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Row 1

(7.26.1) Requesting member

Select from:

✓ Canada Post Corporation

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

0.4

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 2

(7.26.1) Requesting member

Select from:

✓ Canada Post Corporation

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method
Select from: ✓ Allocation based on the market value of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
0
(7.26.9) Emissions in metric tonnes of CO2e
0.4
(7.26.10) Uncertainty (±%)
10
(7.26.11) Major sources of emissions
Purchased electricity
(7.26.12) Allocation verified by a third party?
Select from:

☑ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 3

(7.26.1) Requesting member

Select from:

Corning Incorporated

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:
Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

6

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 4

(7.26.1) Requesting member

Select from:

✓ Corning Incorporated

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

5

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 5

(7.26.1) Requesting member

Select from:

✓ L'Oréal

(7.26.2) Scope of emissions

✓ Scope 1

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

27

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 6

(7.26.1) Requesting member

Select from:

✓ L'Oréal

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

23

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 7

(7.26.1) Requesting member

Select from:

☑ Robert Bosch GmbH

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from: ☑ Allocation based on the market value of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ✓ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
o
(7.26.9) Emissions in metric tonnes of CO2e
46
(7.26.10) Uncertainty (±%)
10
(7.26.11) Major sources of emissions
Stationary and mobile combustion
(7.26.12) Allocation verified by a third party?
Select from: ☑ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 8

(7.26.1) Requesting member

Select from:

✓ Robert Bosch GmbH

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

506

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 9

(7.26.1) Requesting member

Select from:

☑ Schlumberger Limited

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

3

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 10

(7.26.1) Requesting member

Select from:

✓ Schlumberger Limited

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

5

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 11

(7.26.1) Requesting member

Select from:

✓ TotalEnergies SE

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

22

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 12

(7.26.1) Requesting member

Select from:

▼ TotalEnergies SE

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:
✓ Allocation based on the market value of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ✓ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
o
(7.26.9) Emissions in metric tonnes of CO2e
67
(7.26.10) Uncertainty (±%)
10
(7.26.11) Major sources of emissions
Purchased electricity
(7.26.12) Allocation verified by a third party?
Select from: ✓ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and

assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 13

(7.26.1) Requesting member

Select from:

✓ Loblaw Companies Limited

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

☑ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

461

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 14

(7.26.1) Requesting member

Select from:

✓ Loblaw Companies Limited

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

776

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 15

(7.26.1) Requesting member

Select from:

✓ Philip Morris International Inc.

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

9

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Stationary and mobile combustion

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

Row 16

(7.26.1) Requesting member

Select from:

✓ Philip Morris International Inc.

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Business unit (subsidiary company)

(7.26.5) Allocation level detail

For each customer, we assess their relative contribution to a business unit's overall revenue. This percentage serves as a proxy for their share of the business unit's operational footprint. That revenue share is then applied to the business unit's total Scope 1 and Scope 2 emissions to estimate the portion attributable to the customer.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the market value of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

0

(7.26.9) Emissions in metric tonnes of CO2e

7

(7.26.10) Uncertainty (±%)

10

(7.26.11) Major sources of emissions

Purchased electricity

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

The GHG sources have been identified using the method of operational control.

(7.26.14) Where published information has been used, please provide a reference

All information is proprietary. Note revenue from customers is proprietary so a 0 is reported in "Market value of goods/services supplied to the requesting member" column.

[Add row]

(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

Row 1

(7.27.1) Allocation challenges

Select from:

☑ Diversity of product lines makes accurately accounting for each product/product line cost ineffective

(7.27.2) Please explain what would help you overcome these challenges

One of the primary challenges in allocating emissions to different customers for a diverse manufacturing company is the accurate collection and verification of data related to energy consumption, raw material sourcing, and transportation for each unique product. This is compounded by the diversity of products, each with its own manufacturing process, energy requirements, and supply chain footprint, which necessitates a nuanced approach to understanding and attributing environmental impacts. To address these challenges, investing in advanced technology is crucial. The implementation of IoT sensors and AI-driven analytics can significantly enhance the precision of emissions data by providing real-time monitoring and more sophisticated data analysis capabilities. Additionally, conducting comprehensive Lifecycle Assessments (LCAs) for each product category can illuminate the full environmental impact from production to end-of-life.

Row 2

(7.27.1) Allocation challenges

Select from:

☑ Customer base is too large and diverse to accurately track emissions to the customer level

(7.27.2) Please explain what would help you overcome these challenges

Dover's products and customers are diverse and manufacturing occurs in multiple, global locations. Overcoming challenges to allocation would require dedicated manufacturing strategies or detailed life cycle analysis.

[Add row]

(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

(7.28.1) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Select from:

✓ No

(7.28.3) Primary reason for no plans to develop your capabilities to allocate emissions to your customers

Select from:

✓ Lack of internal resources, capabilities, or expertise (e.g., due to organization size)

(7.28.4) Explain why you do not plan to develop capabilities to allocate emissions to your customers

As a company with a diverse range of operations, the process of accurately allocating emissions to different customers requires a substantial upfront investment in technology and resources. Without regulatory mandates or significant market pressure, it's difficult for us to allocate the necessary funds and human resources towards such a complex endeavor.

[Fixed row]

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

✓ More than 0% but less than or equal to 5%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes
Consumption of purchased or acquired electricity	Select from: ✓ Yes
Consumption of purchased or acquired heat	Select from: ✓ Yes
Consumption of purchased or acquired steam	Select from: ☑ No
Consumption of purchased or acquired cooling	Select from: ☑ No
Generation of electricity, heat, steam, or cooling	Select from: ☑ No

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

241864

(7.30.1.4) Total (renewable + non-renewable) MWh

241864.00

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

28616

(7.30.1.3) MWh from non-renewable sources

331423

(7.30.1.4) Total (renewable + non-renewable) MWh

360039.00

Consumption of purchased or acquired heat

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

908

(7.30.1.4) Total (renewable + non-renewable) MWh

908.00

Total energy consumption

(7.30.1.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

28616

(7.30.1.3) MWh from non-renewable sources

574195

(7.30.1.4) Total (renewable + non-renewable) MWh

602811.00

[Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ☑ No
Consumption of fuel for the generation of heat	Select from: ✓ Yes
Consumption of fuel for the generation of steam	Select from: ☑ No
Consumption of fuel for the generation of cooling	Select from: ☑ No
Consumption of fuel for co-generation or tri-generation	Select from: ☑ No

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.8) Comment

Dover does not consume this fuel type in our operations

Other biomass

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.8) Comment

Dover does not consume this fuel type in our operations

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.8) Comment

Dover does not consume this fuel type in our operations

Coal

(7.30.7.1) Heating value

Select from: ☑ HHV
(7.30.7.2) Total fuel MWh consumed by the organization
0
(7.30.7.8) Comment
Dover does not consume this fuel type in our operations
Oil
(7.30.7.1) Heating value
Select from: ☑ HHV
(7.30.7.2) Total fuel MWh consumed by the organization
18967
(7.30.7.8) Comment
Dover consumes biodiesel, diesel, and fuel oil
Gas
(7.30.7.1) Heating value
Select from: ☑ HHV
(7.30.7.2) Total fuel MWh consumed by the organization

(7.30.7.8) Comment

Dover consumes natural gas, compressed natural gas, petroleum gas, liquified petroleum gas, and propane

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

n

(7.30.7.8) Comment

Dover does not consume this fuel type in our operations

Total fuel

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

241864

(7.30.7.8) Comment

This captures all fuels consumed by Dover in MWh [Fixed row]

(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in 7.7.

Row 1

(7.30.14.1) Country/area

Select from:

✓ Sweden

(7.30.14.2) Sourcing method

Select from:

☑ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Hydropower (capacity unknown)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

13110

(7.30.14.6) Tracking instrument used

Select from:

✓ Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute Select from: ✓ Sweden (7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility? Select from: ✓ No (7.30.14.10) Comment None Row 2 (7.30.14.1) Country/area Select from: Slovakia (7.30.14.2) Sourcing method Select from: ✓ Unbundled procurement of energy attribute certificates (EACs) (7.30.14.3) Energy carrier Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Hydropower (capacity unknown)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
10855
(7.30.14.6) Tracking instrument used
Select from: ☑ GO
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ Slovakia
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
None
Row 3
(7.30.14.1) Country/area
Select from: ☑ United States of America

(7.30.14.2) Sourcing method

Select from:

☑ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Renewable energy mix, please specify :Wind & Solar

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

4441

(7.30.14.6) Tracking instrument used

Select from:

☑ US-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ United States of America

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

Green Energy Choice Flex program with Wind & Solar portfolio owned or contracted by utility with RECs provided.

Row 4

(7.30.14.1) Country/area
Select from:
✓ Germany
(7.30.14.2) Sourcing method
Select from: ☑ Retail supply contract with an electricity supplier (retail green electricity)
(7.30.14.3) Energy carrier
Select from: ☑ Electricity
(7.30.14.4) Low-carbon technology type
Select from: ☑ Renewable energy mix, please specify :100% renewable green electricity mix
(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
4.64
(7.30.14.6) Tracking instrument used
Select from: ☑ Contract
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ Germany

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from: ☑ No			
(7.30.14.10) Comn	ent		
None			
Row 5			
(7.30.14.1) Country	r/area		
Select from: ☑ Malaysia			
(7.30.14.2) Sourcir	g method		
Select from: ✓ Retail supply contract	with an electricity supplier (reta	il green electricity)	

Select from:

(7.30.14.3) Energy carrier

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Renewable energy mix, please specify :Mix of electricity generated from renewable energy sources

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

120

(7.30.14.6) Tracking instrument used

Select from: ✓ Contract
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ Malaysia
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
None [Add row]
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.
Argentina
(7.30.16.1) Consumption of purchased electricity (MWh)
90.49
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 90.49 **Australia** (7.30.16.1) Consumption of purchased electricity (MWh) 1837.82 (7.30.16.2) Consumption of self-generated electricity (MWh) (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 1837.82 **Austria** (7.30.16.1) Consumption of purchased electricity (MWh) 0.17

(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
0.17
Belgium
(7.30.16.1) Consumption of purchased electricity (MWh)
504.2
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

Brazil

(7.30.16.1) Consumption of purchased electricity (MWh)

3747.07

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

3747.07

Canada

(7.30.16.1) Consumption of purchased electricity (MWh)

4478.69

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

4478.69

China

(7.30.16.1) Consumption of purchased electricity (MWh)

34827.26

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

268.89

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

35096.14

Czechia

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 0 **Denmark** (7.30.16.1) Consumption of purchased electricity (MWh) 2365.52 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
2365.52
Dominican Republic
(7.30.16.1) Consumption of purchased electricity (MWh)
379.48
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
379.48
Finland
(7.30.16.1) Consumption of purchased electricity (MWh)
0.01
(7.30.16.2) Consumption of self-generated electricity (MWh)
0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 0.01 **France** (7.30.16.1) Consumption of purchased electricity (MWh) 5989.01 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 5989.01 Germany

(7.30.16.1) Consumption of purchased electricity (MWh)
6806.58
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
6896.19
India
(7.30.16.1) Consumption of purchased electricity (MWh)
6716.37
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

6716.37

Italy

(7.30.16.1) Consumption of purchased electricity (MWh)

17467.57

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

17467.57

Japan

(7.30.16.1) Consumption of purchased electricity (MWh)

2584.72

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

2584.72

Luxembourg

(7.30.16.1) Consumption of purchased electricity (MWh)

51.01

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

51.02

Malaysia

(7.30.16.1) Consumption of purchased electricity (MWh)

4188.89

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

4308.89

Mexico

(7.30.16.1) Consumption of purchased electricity (MWh)

4430.18

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 4430.18 **Netherlands** (7.30.16.1) Consumption of purchased electricity (MWh) 1218.05 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 1218.05 **Norway** (7.30.16.1) Consumption of purchased electricity (MWh)

0.17

(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
0.17
Philippines
(7.30.16.1) Consumption of purchased electricity (MWh)
566.79
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

Poland

(7.30.16.1) Consumption of purchased electricity (MWh)

317.99

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

317.99

Republic of Korea

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0

Romania

(7.30.16.1) Consumption of purchased electricity (MWh)

188.91

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

188.91

Russian Federation

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 0 **Singapore** (7.30.16.1) Consumption of purchased electricity (MWh) 324.16 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
324.16
Slovakia
(7.30.16.1) Consumption of purchased electricity (MWh)
10885.19
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
o
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
21740.43
Spain
(7.30.16.1) Consumption of purchased electricity (MWh)
423.1
(7.30.16.2) Consumption of self-generated electricity (MWh)
0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 423.1 **Sweden** (7.30.16.1) Consumption of purchased electricity (MWh) 15329.2 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 639.16 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 29078.17

Switzerland

(7.30.16.1) Consumption of purchased electricity (MWh)
2795.11
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
2795.11
Taiwan, China
(7.30.16.1) Consumption of purchased electricity (MWh)
o
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0

Thailand

(7.30.16.1) Consumption of purchased electricity (MWh)

1176.78

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1176.78

Turkey

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0

United Arab Emirates

(7.30.16.1) Consumption of purchased electricity (MWh)

23.88

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

23.88

United Kingdom of Great Britain and Northern Ireland

(7.30.16.1) Consumption of purchased electricity (MWh) (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 0 **United States of America** (7.30.16.1) Consumption of purchased electricity (MWh) 0 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0
[Fixed row]

(7.34) Does your organization measure the efficiency of any of its products or services?

(7.34.1) Measurement of product/service efficiency

Select from:

Yes

(7.34.2) Comment

Dover operating companies innovate for sustainability by developing products that are designed to help our customers meet their sustainability goals, run their operations more efficiently, and satisfy evolving regulatory and environmental standards. Efficiency is core to many product offerings and is measured in different ways throughout Dover's large portfolio of product offerings. Many Dover operating companies include evaluating efficiency (of energy, water, or carbon) as a key decision point in their new product development process. No single efficiency metric is relevant across the portfolio but some efficiency measures are reported below. [Fixed row]

(7.34.1) Provide details of the metrics used to measure the efficiency of your organization's products or services.

Row 1

(7.34.1.1) Category of product or service

Select from:

✓ Industrial machinery

(7.34.1.2) Product or service (optional)

Hillphoenix EcoBlade Shelf-Edge Technology

(7.34.1.3) % of revenue from this product or service in the reporting year

0

(7.34.1.4) Efficiency figure in the reporting year

33

(7.34.1.5) Metric numerator

Select from:

✓ %

(7.34.1.6) Metric denominator

Select from:

✓ watt-hour

(7.34.1.7) Comment

A retrofit for open refrigeration cases that reduces refrigeration energy consumption by up to 33% by preventing cold-air loss. By channeling airflow inside the case (using a dual-blade "air curtain"), EcoBlade maintains product cooling while saving one-third of the energy that would be wasted to the aisle. Denominator: electricity usage (kWh) for an open refrigerated case over a given period, with EcoBlade vs. without. Please note that % revenue from this product is noted as 0 as that information is proprietary.

Row 2

(7.34.1.1) Category of product or service

Select from:

✓ Industrial machinery

(7.34.1.2) Product or service (optional)

Wilden Pro-Flo® SHIFT AODD Pump

(7.34.1.3) % of revenue from this product or service in the reporting year

0

(7.34.1.4) Efficiency figure in the reporting year

60

(7.34.1.5) Metric numerator

Select from:

✓ %

(7.34.1.6) Metric denominator

Select from:

✓ Other, please specify :year

(7.34.1.7) Comment

An air-operated double-diaphragm industrial pump with an energy-optimizing air distribution system. It cuts compressed air usage by up to 60% while delivering about 34% higher flow rates versus conventional AODD pumps. Denominator: compressed air usage measured in standard cubic feet per minute (SCFM) to deliver an equivalent pumping output. Please note that % revenue from this product is noted as 0 as that information is proprietary.

[Add row]

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.000023

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

180019.59

(7.45.3) Metric denominator

Select from:

✓ unit total revenue

(7.45.4) Metric denominator: Unit total

7745909000

(7.45.5) Scope 2 figure used

Select from:

✓ Market-based

(7.45.6) % change from previous year

5

(7.45.7) Direction of change

Select from:

✓ Increased

(7.45.8) Reasons for change

Select all that apply

☑ Change in output

☑ Change in revenue

(7.45.9) Please explain

Our Scope 1 and 2 emissions intensity increased by 5%, driven by a combination of factors. Our revenue did increase year-over-year and we also saw higher production or activity in emissions-intensive areas. Additionally, improvements in our emissions calculation methods led to more accurate and comprehensive reporting, further contributing to the increase.

[Add row]

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

✓ Absolute target

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

Select from:

✓ Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Target Validation Report DOVE-USA-001-OFF TVR.pdf

(7.53.1.4) Target ambition

Select from:

✓ Well-below 2°C aligned

(7.53.1.5) Date target was set

01/01/2020

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ☑ Hydrofluorocarbons (HFCs)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.11) End date of base year

12/31/2019

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

57601

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

152832

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

0.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

210433.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

12/31/2030

(7.53.1.55) Targeted reduction from base year (%)

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

147303.100

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

50756.61

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

129262.98

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

180019.590

(7.53.1.78) Land-related emissions covered by target

Select from:

✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

48.18

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

100% of scope 1 and scope 2 emissions are included in the target

(7.53.1.83) Target objective

As a manufacturing company, we recognize the importance of setting a decarbonization target to pave the way for a future that is less reliant on fossil fuels. Our goal is to shift towards a cleaner operating model that not only aligns with global sustainability efforts but also proves cost-effective in the long term. By committing to this transition, we are investing in renewable energy and cutting-edge technologies that will reduce our carbon footprint and operational expenses. This proactive approach ensures that we stay ahead of regulatory changes and market trends that favor environmentally responsible practices.

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

We are developing a roadmap to achieve Dover's science-based targets in a cost-effective way, leveraging positive ROI projects, tax credits and incentives to help fund more capital-intensive projects. Our modeling will provide detailed projections of the annual expenses and potential monetary and carbon savings. We are modeling out 15 specific decarbonization levers across the 3 scopes of emissions. The Scope 1 levers include activities like: (1) electrifying our fleet; (2) improving the efficiency of fossil fuel boilers, and (3) replacing high GWP refrigerants with low GWP products. The Scope 2 levers include activities like: buying renewable energy credits, VPPAs, and green tariffs.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

Row 2

(7.53.1.1) Target reference number

Select from:

✓ Abs 2

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Target Validation Report DOVE-USA-001-OFF TVR.pdf

(7.53.1.4) Target ambition

Select from:

✓ 2°C aligned

(7.53.1.5) Date target was set

01/01/2020

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ☑ Hydrofluorocarbons (HFCs)

(7.53.1.8) Scopes

Select all that apply

✓ Scope 3

(7.53.1.10) Scope 3 categories

Select all that apply

- ✓ Scope 3, Category 15 Investments
- ✓ Scope 3, Category 2 Capital goods
- ✓ Scope 3, Category 6 Business travel
- ✓ Scope 3, Category 7 Employee commuting
- ✓ Scope 3, Category 11 Use of sold products
- ☑ Scope 3, Category 9 Downstream transportation and distribution

- ✓ Scope 3, Category 1 Purchased goods and services
- ✓ Scope 3, Category 10 Processing of sold products
- ✓ Scope 3, Category 5 Waste generated in operations
- ✓ Scope 3, Category 12 End-of-life treatment of sold products
- ☑ Scope 3, Category 4 Upstream transportation and distribution

✓ Scope 3, Category 3 – Fuel- and energy- related activities (not included in Scope 1 or 2)

(7.53.1.11) End date of base year

12/31/2019

(7.53.1.14) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

1029633.87

(7.53.1.15) Base year Scope 3, Category 2: Capital goods emissions covered by target (metric tons CO2e)

31460.8

(7.53.1.16) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target (metric tons CO2e)

21588.78

(7.53.1.17) Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

223516.48

(7.53.1.18) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

8341.31

(7.53.1.19) Base year Scope 3, Category 6: Business travel emissions covered by target (metric tons CO2e)

27508.93

(7.53.1.20) Base year Scope 3, Category 7: Employee commuting emissions covered by target (metric tons CO2e)

40012.9

(7.53.1.22) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

238790.34

(7.53.1.23) Base year Scope 3, Category 10: Processing of sold products emissions covered by target (metric tons CO2e)

1.32

(7.53.1.24) Base year Scope 3, Category 11: Use of sold products emissions covered by target (metric tons CO2e)

15234745.64

(7.53.1.25) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target (metric tons CO2e)

444769.91

(7.53.1.28) Base year Scope 3, Category 15: Investments emissions covered by target (metric tons CO2e)

92687.08

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

17393057.360

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

17393057.360

(7.53.1.35) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

100.0

(7.53.1.36) Base year Scope 3, Category 2: Capital goods emissions covered by target as % of total base year emissions in Scope 3, Category 2: Capital goods (metric tons CO2e)

100.0

(7.53.1.37) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target as % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

100

(7.53.1.38) Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

100.0

(7.53.1.39) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

100.0

(7.53.1.40) Base year Scope 3, Category 6: Business travel emissions covered by target as % of total base year emissions in Scope 3, Category 6: Business travel (metric tons CO2e)

100.0

(7.53.1.41) Base year Scope 3, Category 7: Employee commuting covered by target as % of total base year emissions in Scope 3, Category 7: Employee commuting (metric tons CO2e)

100.0

(7.53.1.43) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

(7.53.1.44) Base year Scope 3, Category 10: Processing of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 10: Processing of sold products (metric tons CO2e)

100.0

(7.53.1.45) Base year Scope 3, Category 11: Use of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 11: Use of sold products (metric tons CO2e)

100.0

(7.53.1.46) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products (metric tons CO2e)

100.0

(7.53.1.49) Base year Scope 3, Category 15: Investments emissions covered by target as % of total base year emissions in Scope 3, Category 15: Investments (metric tons CO2e)

100.0

(7.53.1.52) Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

100.0

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100.0

(7.53.1.54) End date of target

(7.53.1.55) Targeted reduction from base year (%)

15

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

14784098.756

(7.53.1.59) Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e)

733607

(7.53.1.60) Scope 3, Category 2: Capital goods emissions in reporting year covered by target (metric tons CO2e)

28186

(7.53.1.61) Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions in reporting year covered by target (metric tons CO2e)

23433

(7.53.1.62) Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

133062

(7.53.1.63) Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

3755

(7.53.1.64) Scope 3, Category 6: Business travel emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.65) Scope 3, Category 7: Employee commuting emissions in reporting year covered by target (metric tons CO2e)

43430

(7.53.1.67) Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

259185

(7.53.1.68) Scope 3, Category 10: Processing of sold products emissions in reporting year covered by target (metric tons CO2e)

1

(7.53.1.69) Scope 3, Category 11: Use of sold products emissions in reporting year covered by target (metric tons CO2e)

13606121

(7.53.1.70) Scope 3, Category 12: End-of-life treatment of sold products emissions in reporting year covered by target (metric tons CO2e)

482757

(7.53.1.73) Scope 3, Category 15: Investments emissions in reporting year covered by target (metric tons CO2e)

100603

(7.53.1.76) Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

15443998.000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

74.71

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

100% of scope 3 emissions are included in the target

(7.53.1.83) Target objective

By reducing the carbon footprint of our product line, we are responding to the growing demand for eco-friendly options in the marketplace. Decarbonizing our products means we are innovating in design, materials, and production processes to minimize emissions, which can also lead to cost savings and efficiency gains. As a result, we are not just offering our customers products that are better for the planet, but we are also setting a new industry standard that contributes to a cleaner, more sustainable world.

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

We recently completed a rebaseline of our 2019 Scope 1 and 2 emissions and plan to rebaseline Scope 3 emissions to reflect acquisitions and methodological improvements since 2019. We're developing a cost-effective roadmap to achieve Dover's science-based targets by prioritizing positive ROI decarbonization projects and leveraging tax credits and incentives to help fund more capital-intensive efforts. Our modeling includes detailed projections of annual costs, carbon reductions, and potential monetary savings across 15 specific decarbonization levers spanning all three scopes. Scope 3 levers are tailored to each OpCo, reflecting their unique products and market demands. Many of these focus on improving product energy efficiency, electrification, and transitioning to lower-GWP refrigerants where feasible. To support execution, we've embedded Scope 3 goals into OpCo presidents' incentive plans that revolve around integrating sustainability into the stage-gate process for new product development.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

Select all that apply

✓ Other climate-related targets

(7.54.2) Provide details of any other climate-related targets, including methane reduction targets.

Row 1

(7.54.2.1) Target reference number

Select from:

✓ Oth 1

(7.54.2.2) Date target was set

01/01/2020

(7.54.2.3) Target coverage

Select from:

✓ Business activity

(7.54.2.4) Target type: absolute or intensity

Select from:

Absolute

(7.54.2.5) Target type: category & metric (target numerator if reporting an intensity target) Net emissions target ✓ Net metric tons CO2e (7.54.2.7) End date of base year 12/31/2016 (7.54.2.8) Figure or percentage in base year 12628.44 (7.54.2.9) End date of target 12/31/2030 (7.54.2.10) Figure or percentage at end of date of target 0 (7.54.2.11) Figure or percentage in reporting year 9627 (7.54.2.12) % of target achieved relative to base year 23.7673061756

(7.54.2.13) Target status in reporting year

Select from:

Underway

(7.54.2.15) Is this target part of an emissions target?

Yes, this target supports Dover's broader scope 1 and 2 science-based targets.

(7.54.2.16) Is this target part of an overarching initiative?

Select all that apply

✓ No, it's not part of an overarching initiative

(7.54.2.18) Please explain target coverage and identify any exclusions

SWEP has developed 2030 goals to reduce their environmental impact, including achieving carbon neutrality across its scope 1 and 2 emissions.

(7.54.2.19) Target objective

Achieve carbon neutrality across scope 1 and 2 emissions by 2030.

(7.54.2.20) Plan for achieving target, and progress made to the end of the reporting year

Since setting its net zero target in 2020, SWEP has made meaningful progress toward eliminating Scope 1 and 2 emissions by 2030. The company has upgraded equipment at key manufacturing sites in Sweden, Slovakia, China, and the U.S. to improve energy efficiency and reduce direct emissions. It has also expanded onsite renewable energy production and secured renewable fuel agreements for freight operations, further lowering its carbon footprint. In parallel, SWEP has embedded sustainability into its culture through company-wide training and established a dedicated ESG board to oversee progress. Looking ahead, SWEP continues to focus on operational decarbonization, renewable energy adoption, and sustainability governance to meet its 2030 net zero goal. [Add row]

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

✓ Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e
Under investigation	0	`Numeric input
To be implemented	1	21
Implementation commenced	3	91
Implemented	2	26
Not to be implemented	0	`Numeric input

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Lighting

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

16

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

6000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

41000

(7.55.2.7) Payback period

Select from:

✓ 4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

☑ 6-10 years

(7.55.2.9) Comment

We replaced all outdoor and parking lot lighting systems at one of our operating company facilities by replacing existing High-Pressure Sodium (HPS) fixtures with energy-efficient LED technology.

Row 2

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

10

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

3000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

32000

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

☑ 16-20 years

(7.55.2.9) Comment

We replaced a legacy HVAC unit at an operating company facility with a modern system utilizing new technology

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

☑ Employee engagement

(7.55.3.2) Comment

Our company is actively driving investment in emissions reduction by utilizing our network of GHG Champions across each OpCo. These champions meet quarterly to track and manage emission reduction projects, ensuring accountability and progress. They also facilitate project sharing across OpCos, which enhances our collective efforts. Additionally, we maintain an internal SharePoint site where employees can access information on our sustainability efforts, further promoting transparency and engagement in our environmental objectives.

Row 2

(7.55.3.1) Method

Select from:

✓ Internal incentives/recognition programs

(7.55.3.2) Comment

In 2024 Dover established objectives within the Annual Incentive Plans for each OpCo President. These objectives are designed to foster accountability and promote collective stewardship regarding environmental impacts. The specifics of the targets are centered around the development of actionable strategies to reduce operational emissions and the integration of sustainability into new product development processes.

[Add row]

(7.71) Does your organization assess the life cycle emissions of any of its products or services?

Assessment of life cycle emissions	Comment
Select from: ✓ Yes	Use phase emissions are calculated for at least a representative selection of products/services using GHG protocol (Scope 3 calculation).

[Fixed row]

(7.71.1) Provide details of how your organization assesses the life cycle emissions of its products or services.

(7.71.1.1) Products/services assessed

Select from:

☑ Representative selection of products/services

(7.71.1.2) Life cycle stage(s) most commonly covered

Select from:

✓ Use stage

(7.71.1.3) Methodologies/standards/tools applied

Select all that apply

☑ GHG Protocol Product Accounting & Reporting Standard

(7.71.1.4) Comment

Use phase emissions are calculated for at least a representative selection of products/services using GHG protocol (Scope 3, Cat 11 calculation). [Fixed row]

(7.73) Are you providing product level data for your organization's goods or services?

Select from:

✓ No, I am not providing data

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

Yes

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

☑ The EU Taxonomy for environmentally sustainable economic activities

(7.74.1.3) Type of product(s) or service(s)

Hydrogen

✓ Other, please specify: Manufacture of equipment for the production and use of hydrogen

(7.74.1.4) Description of product(s) or service(s)

DFS hydrogen dispensers and cooling systems; OPW ACME & RegO products for hydrogen applications; PSG excess flow valves and explosion-proof flow switches used to monitor the flow of hydrogen in multiple industries. Please note that this assessment of low-carbon products and services is only based on an EU Taxonomy-eligibility assessment of revenue-generating activities. Preliminary results indicate Dover generates approximately 35% of revenue from EU Taxonomy eligible

activities contributing to the Climate change mitigation and Circular economy objectives, including this one and others. Dover also has a wide variety of products supporting other sustainability objectives like water efficiency and pollution prevention as well as climate transition fuels like CNG and LNG which do not appear to fit the EU's definition of activities supporting these objectives.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

0.02

Row 2

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

☑ The EU Taxonomy for environmentally sustainable economic activities

(7.74.1.3) Type of product(s) or service(s)

Buildings construction and renovation

☑ Other, please specify :Manufacture of energy efficiency equipment for buildings

(7.74.1.4) Description of product(s) or service(s)

Our energy-efficient equipment portfolio includes sustainable refrigeration systems and cases using eco-friendly refrigerants like CO2 and Solochill, catering to a wide range of commercial and industrial clients. We also sell various heat pumps and boilers, all designed to optimize performance and minimize environmental impact for both residential and commercial applications. Please note that this assessment of low-carbon products and services is only based on an EU Taxonomy-eligibility

assessment of revenue-generating activities. Preliminary results indicate Dover generates approximately 35% of revenue from EU Taxonomy eligible activities contributing to the Climate change mitigation and Circular economy objectives, including this one and others. Dover also has a wide variety of products supporting other sustainability objectives like water efficiency and pollution prevention as well as climate transition fuels like CNG and LNG which do not appear to fit the EU's definition of activities supporting these objectives.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

V No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

8

Row 3

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

☑ The EU Taxonomy for environmentally sustainable economic activities

(7.74.1.3) Type of product(s) or service(s)

Other

☑ Other, please specify: Infrastructure enabling low-carbon road transport and public transport

(7.74.1.4) Description of product(s) or service(s)

DFS provides DC fast chargers for electric vehicles. Please note that this assessment of low-carbon products and services is only based on an EU Taxonomy-eligibility assessment of revenue-generating activities. Preliminary results indicate Dover generates approximately 35% of revenue from EU Taxonomy eligible

activities contributing to the Climate change mitigation and Circular economy objectives, including this one and others. Dover also has a wide variety of products supporting other sustainability objectives like water efficiency and pollution prevention as well as climate transition fuels like CNG and LNG which do not appear to fit the EU's definition of activities supporting these objectives.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

0.02 [Add row]

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

✓ No

- **C9. Environmental performance Water security**
- (9.1) Are there any exclusions from your disclosure of water-related data?

Select from:

✓ No

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

☑ 76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Water utility bill data, by volume, was collected from sites monthly or bi-monthly. For sites where data was not available, Dover extrapolated the annual volumes based on average yearly water withdrawal within a given operating company. Using these methods, water withdrawal was calculated or estimated for nearly all Dover sites.

(9.2.4) Please explain

Using both actuals and estimations, water withdrawal was calculated or estimated for nearly all Dover sites.

Water withdrawals - volumes by source

(9.2.1) % of sites/facilities/operations

Select from:

☑ 76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Water utility bill data, by volume, was collected from sites monthly or bi-monthly. For sites where data was not available, Dover extrapolated the annual volumes based on average yearly water withdrawal within a given operating company. Using these methods, water withdrawal was calculated or estimated for nearly all Dover sites.

(9.2.4) Please explain

Using both actuals and estimations, water withdrawal was calculated or estimated for nearly all Dover sites.

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

All of our water withdrawals are sourced from municipal supplies, which are required to provide water that meets commercial quality standards.

Water discharges - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Water utility bill data, by volume, was collected from reporting sites monthly or bi-monthly. For sites where data was not available, Dover extrapolated the annual volumes based on average yearly water discharge within a given operating company. Using these processes, water discharge is monitored and directly measured or estimated at nearly all Dover sites.

(9.2.4) Please explain

Using both actuals and estimations, water discharge was calculated or estimated for nearly all Dover sites.

Water discharges - volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Municipal water utility bill data, by volume, was collected from reporting sites monthly or bi-monthly. For sites where data was not available, Dover extrapolated the annual volumes based on average yearly water discharge within a given operating company. Using these processes, water discharge is monitored and directly measured or estimated at nearly all of Dover sites.

(9.2.4) Please explain

Using both actuals and estimations, water discharge was calculated or estimated for nearly all Dover sites. Almost all of our wastewater is discharged to local municipal treatment plants, so total discharge by volume is no different than water discharge volumes by destination.

Water discharges - volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

Almost all our water is discharged to local municipal treatment plants or to groundwater from irrigation.

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

All of our water discharge meets standard effluent parameters. While local authorities may require general water quality permits for some of our facilities, this would be rare. Therefore, monitoring at the corporate level would not be relevant to Dover's overall water stewardship.

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

The mass of any water pollutants or contaminants, such as nitrates and pesticides, released to bodies of water meets local guidance in which our companies operate.

Water discharge quality – temperature

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

All of our water discharge meets standard temperature parameters. While local authorities may require general water quality permits for some of our facilities, this would be rare. Therefore, monitoring at the corporate level would not be relevant to Dover's overall water stewardship.

Water consumption – total volume

(9.2.1) % of sites/facilities/operations

Select from:

76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Municipal water utility bill data, by volume, was collected from these reporting sites monthly or bi-monthly. For sites where data was not available, Dover extrapolated the annual volumes based on average yearly water withdrawal and discharge within a given operating company. Total water consumption, by volume, is calculated by taking the difference between total water withdrawal and total water discharge, providing an aggregated estimation of water consumption across all global operations.

(9.2.4) Please explain

Using both actuals and estimations, water consumption was calculated or estimated for nearly all Dover sites.

Water recycled/reused

(9.2.1) % of sites/facilities/operations

Select from:

✓ 1-25

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Water recycled or reused throughout our facilities is measured either through direct metering or estimated using operational parameters with monitoring conducted at the facility level.

(9.2.4) Please explain

Several of our operating companies utilize recycled water for resource efficiency with examples provided throughout our CDP response.

The provision of fully-functioning, safely managed WASH services to all workers

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Almost all of our water is sourced from municipal supplies which are required to provide water that meets commercial quality standards which we monitor continuously.

(9.2.4) Please explain

We provide fully functioning WASH services for employees at all our facilities. Almost all of our water is sourced from municipal supplies which are required to provide water that meets commercial quality standards.

[Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

646

(9.2.2.2) Comparison with previous reporting year

Select from:

Lower

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.2.4) Five-year forecast

Select from:

✓ About the same

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Dover's year-over-year reduction in water withdrawals reflects a combination of operational improvements and improved data collection. Across its facilities, Dover has implemented water conservation measures such as recycling and reuse systems, rainwater harvesting, and equipment upgrades that reduce overall water demand. In parallel, Dover has strengthened its internal tracking and reporting processes, leading to more accurate and consistent measurement of water use. As we increase in business activity, we expect operational efficiencies to offset business growth.

Total discharges

(9.2.2.1) Volume (megaliters/year)

392

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.2.4) Five-year forecast

Select from:

✓ About the same

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Dover's year-over-year reduction in water discharge reflects a combination of operational improvements and improved data collection. Across its facilities, Dover has implemented water conservation and reuse measures, such as recycling systems and equipment upgrades, that reduce the volume of water requiring discharge. In parallel, Dover has strengthened its internal tracking and reporting processes, leading to more accurate and consistent measurement of water discharge. As we increase in business activity, we expect operational efficiencies to offset business growth.

Total consumption

(9.2.2.1) Volume (megaliters/year)

254

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.2.4) Five-year forecast

Select from:

☑ About the same

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Dover's year-over-year reduction in consumption discharge reflects a combination of operational improvements and improved data collection. Across its global footprint, Dover has implemented water-saving measures such as recycling and reuse systems, rainwater harvesting, and equipment upgrades that reduce the volume of water consumed in operations. At the same time, Dover has strengthened its internal processes for tracking and reporting water consumption, enabling more accurate and consistent measurement across its operating companies. As we increase in business activity, we expect operational efficiencies to offset business growth.

[Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

134.72

(9.2.4.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.4.5) Five-year forecast

Select from:

Higher

(9.2.4.6) Primary reason for forecast

Select from:

✓ Increase/decrease in business activity

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

20.85

(9.2.4.8) Identification tool

Select all that apply

✓ WRI Aqueduct

(9.2.4.9) Please explain

While Dover remains committed to improving operational efficiency and reducing overall environmental impact, it is possible that the percentage of our total water withdrawal from areas with water stress could increase in the coming years. This projection is driven by several converging factors: Higher Business Activity: As Dover continues to grow and expand operations globally, increased production and facility utilization may naturally lead to greater water use, including in regions already experiencing water stress. Climate Change Dynamics: Climate change is expected to intensify water scarcity across more geographies. Areas that are currently considered low or moderate stress may shift into higher stress categories over time, thereby increasing the proportion of our water withdrawal from stressed regions, even if our absolute water use remains stable or declines.

[Fixed row]

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

This source is not considered relevant to Dover's overall water withdrawal and use, as facility-level reporting indicates minimal or no reliance on it.

Brackish surface water/Seawater

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

This source is not considered relevant to Dover's overall water withdrawal and use, as facility-level reporting indicates minimal or no reliance on it.

Groundwater – renewable

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

This source is not considered relevant to Dover's overall water withdrawal and use, as facility-level reporting indicates minimal or no reliance on it.

Groundwater - non-renewable

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

This source is not considered relevant to Dover's overall water withdrawal and use, as facility-level reporting indicates minimal or no reliance on it.

Produced/Entrained water

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

This source is not considered relevant to Dover's overall water withdrawal and use, as facility-level reporting indicates minimal or no reliance on it.

Third party sources

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

646

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.7.5) Please explain

Third-party sources are considered the primary source of Dover's water withdrawal, as facility-level reporting indicates that most water is supplied by external providers such as municipal utilities. Dover's year-over-year reduction in water withdrawals reflects a combination of operational improvements and improved data collection. Across its facilities, Dover has implemented water conservation measures such as recycling and reuse systems, rainwater harvesting, and equipment upgrades that reduce overall water demand. In parallel, Dover has strengthened its internal tracking and reporting processes, leading to more accurate and consistent measurement of water use. As we increase in business activity, we expect operational efficiencies to offset business growth.

[Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

This destination is not considered relevant to Dover's overall water discharge with little to no direct discharge to natural surface water bodies.

Brackish surface water/seawater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

This destination is not considered relevant to Dover's overall water discharge with little to no discharge to brackish water sources.

Groundwater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

This destination is not considered relevant to Dover's overall water discharge with little to no discharge to groundwater.

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

392

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.8.5) Please explain

Third-party destinations are considered the primary pathway for Dover's water discharge, as most wastewater is sent to external treatment systems such as municipal sewer networks. Dover's year-over-year reduction in water discharge reflects a combination of operational improvements and improved data collection. Across its facilities, Dover has implemented water conservation and reuse measures, such as recycling systems and equipment upgrades, that reduce the volume of water requiring discharge. In parallel, Dover has strengthened its internal tracking and reporting processes, leading to more accurate and consistent measurement of water discharge. As we increase in business activity, we expect operational efficiencies to offset business growth.

[Fixed row]

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, and are not planning to do so in the next 2 years

(9.3.4) Please explain

Dover has conducted a CSRD-aligned double materiality assessment and determined that water-related dependencies, impacts, risks, and opportunities are not material within Dover's direct operations and its upstream value chain. Dover will continue to monitor this on a periodic basis and as required by regulation or due to material changes to the business.

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, and are not planning to do so in the next 2 years

(9.3.4) Please explain

Dover has conducted a CSRD-aligned double materiality assessment and determined that water-related dependencies, impacts, risks, and opportunities are not material within Dover's direct operations and its upstream value chain. Dover will continue to monitor this on a periodic basis and as required by regulation or due to material changes to the business.

[Fixed row]

(9.4) Could any of your facilities reported in 9.3.1 have an impact on a requesting CDP supply chain member?

Select from:

✓ No facilities were reported in 9.3.1

(9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

7745909000

(9.5.2) Total water withdrawal efficiency

11990571.21

(9.5.3) Anticipated forward trend

We predict our water withdrawal efficiency to stay the same over the coming years. While total water use may increase due to operational expansion, our operating companies are investing in water-saving technologies, recycling systems, and product innovations that reduce water dependency.

[Fixed row]

(9.12) Provide any available water intensity values for your organization's products or services.

Row 1

(9.12.1) Product name

MS JP7

(9.12.2) Water intensity value

2.17

(9.12.3) Numerator: Water aspect

Select from:

Water consumed

(9.12.4) Denominator

Kilograms processed material

(9.12.5) Comment

MS Printing Solutions has developed pigment printing solutions that enable a waterless process for more sustainable and cost-effective printing. The JK ink formula doesn't require pre or post treatment and therefore water consumption is reduced by 95% compared to traditional acid or reactive printing methods. [Add row]

(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?

(9.13.1) Products contain hazardous substances

Select from:

Unknown

(9.13.2) Comment

To the best of the company's knowledge, we do not have any reason to believe that our operating companies' products contain any hazardous substances, except to the extent and in the manner permitted by law and all associated regulatory prohibitions, restrictions, and/or requirements.

[Fixed row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

Yes

(9.14.2) Definition used to classify low water impact

Innovation yields an expected 30% or greater improvement upon a previous generation of products or peer offering meeting one or more of these criteria: Customer material use Customer chemical use

(9.14.4) Please explain

We are committed to creating long-term economic value by developing products that are designed to help our customers meet their sustainability goals, run their operations more efficiently, and satisfy evolving regulatory and environmental standards. This includes developing low water impact products. For example, MS Printing Solutions' LaRio single-pass digital textile printer has water use of only 2.67L/kg of processed material, which is over 90% less than the 100L/kg in traditional textile finishing.

[Fixed row]

(9.15) Do you have any water-related targets?

Select from:

✓ Yes

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

✓ No, and we do not plan to within the next two years

(9.15.1.2) Please explain

Our commitment to reducing environmental impact includes being a good steward of a vital resource we all rely on – water. Accordingly, while our operations are not significantly water intensive, we make efforts to manage our water use and water discharge to limit potential negative impacts of water pollution. Dover has conducted a CSRD-aligned double materiality assessment that determined water pollution as not material across its direction operations and value chain. Dover will continue to monitor this on a periodic basis and as required by regulation or due to material changes to the business.

Water withdrawals

(9.15.1.1) Target set in this category

Select from:

✓ No, and we do not plan to within the next two years

(9.15.1.2) Please explain

Our commitment to reducing environmental impact includes being a good steward of a vital resource we all rely on – water. Accordingly, while our operations are not significantly water intensive, we make efforts to manage our water use, and simultaneously consider our indirect water consumption by helping our customers reduce their water use. Dover has conducted a CSRD-aligned double materiality assessment that determined water, including withdrawals, as not material across its direction operations and value chain. Dover will continue to monitor this on a periodic basis and as required by regulation or due to material changes to the business.

Water, Sanitation, and Hygiene (WASH) services

(9.15.1.1) Target set in this category

Select from:

✓ No, and we do not plan to within the next two years

(9.15.1.2) Please explain

Dover does not play a significant role in the provision of Water, Sanitation, and Hygiene (WASH) services. Dover does not track WASH data and does not plan to within the next two years.

Other

(9.15.1.1) Target set in this category

Select from:

Yes	
[Fixed row]	1

(9.15.2) Provide details of your water-related targets and the progress made.

Row 1

(9.15.2.1) Target reference number

Select from:

✓ Target 1

(9.15.2.2) Target coverage

Select from:

✓ Business division

(9.15.2.3) Category of target & Quantitative metric

Water consumption

☑ Reduction in total water consumption

(9.15.2.4) Date target was set

01/01/2019

(9.15.2.5) End date of base year

12/31/2019

(9.15.2.6) Base year figure

100

(9.15.2.7) End date of target year

12/31/2030

(9.15.2.8) Target year figure

47

(9.15.2.9) Reporting year figure

54

(9.15.2.10) Target status in reporting year

Select from:

Underway

(9.15.2.11) % of target achieved relative to base year

87

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ None, alignment not assessed

(9.15.2.13) Explain target coverage and identify any exclusions

Dover does not currently have a corporate-wide water-related target. However, Markem-Imaje, one of our Operating Companies, does have a water-related target for its operations.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

Markem-Imaje's plan for achieving the target includes upgrading manufacturing processes to reduce water use and the systematic monitoring of water discharges and leaks. To date, Markem-Imaje's facilities have found innovative ways to reduce water consumption. For example, our Keene manufacturing location reduced water consumption by 30% in 2019 by installing a closed-loop system that re-circulates cooling water for operations.

(9.15.2.16) Further details of target

Markem-Imaje sites have received Platinum and Gold ratings, reflecting strong sustainability performance including water management and we continue to drive water conservation efforts forward.

[Add row]

C11. Environmental performance - Biodiversity

(11.2) What actions has your organization tal	ken in the reporting year to progress your biodiversity-related commitments?
	Actions taken in the reporting period to progress your biodiversity-related commitments
	Select from: ☑ No, and we do not plan to undertake any biodiversity-related actions
[Fixed row]	
(11.3) Does your organization use biodiversit	y indicators to monitor performance across its activities?
	Does your organization use indicators to monitor biodiversity performance?
	Select from: ☑ No

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

	Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity	Comment
Legally protected areas	Select from: ✓ Not assessed	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.
UNESCO World Heritage sites	Select from: ✓ Not assessed	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.
UNESCO Man and the Biosphere Reserves	Select from: ✓ Not assessed	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.
Ramsar sites	Select from: ✓ Not assessed	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.
Key Biodiversity Areas	Select from: ✓ Yes	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.
Other areas important for biodiversity	Select from: ✓ Not assessed	As a manufacturer, we are not required to be near biologically sensitive areas and do not track the proximity of such areas to our sites.

[Fixed row]

C13. Further information & sign off

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

(13.1.1) Other environmental information included in your CDP response is verified and/or assured by a third party

Select from:

☑ No, but we plan to obtain third-party verification/assurance of other environmental information in our CDP response within the next two years

(13.1.2) Primary reason why other environmental information included in your CDP response is not verified and/or assured by a third party

Select from:

✓ Not an immediate strategic priority

(13.1.3) Explain why other environmental information included in your CDP response is not verified and/or assured by a third party

Our emissions data is annually verified. We anticipate verifying a broader set of environmental information in the coming years as best practices and the regulatory environment evolves. We expect to have a reporting obligation in 2028 under the Corporate Sustainability Reporting Directive (CSRD) requirements, and therefore will also need to obtain external verification for the broader set of information included in ESRS E1 Climate standard, some of which will likely be included in our CDP submission, beyond just emissions data.

[Fixed row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

Chief Executive Officer

(13.3.2) Corresponding job category

Select from:

✓ Chief Executive Officer (CEO) [Fixed row]

(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Select from:

✓ No