Dover Corporation - Climate Change 2022

C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

Dover is a diversified global manufacturer and solutions provider with annual revenue of approximately $8 billion. Dover delivers innovative equipment and components, consumable supplies, aftermarket parts, software and digital solutions, and support services through five operating segments: Engineered Products, Clean Energy & Fueling, Imaging & Identification, Pumps & Process Solutions, and Climate & Sustainability Technologies.

The Company's core strengths of ownership, entrepreneurship, and accountability fuel our ability to deliver cutting edge products and solutions to our customers. Dover is headquartered in Downers Grove, Illinois and currently employs approximately 25,000 people worldwide.

Dover's five operating segments are as follows:

- **Engineered Products** delivers industry-leading equipment, components and software serving the vehicle aftermarket, waste handling, industrial automation and aerospace & defense end markets.

- **Clean Energy & Fueling** provides a comprehensive portfolio of safety and efficiency solutions for the convenience retail, fueling and clean energy, cryogenic gas and vehicle wash markets.

- **Imaging & Identification** leads the design and manufacture of equipment, consumables and software, in addition to providing support services for the marking & coding, product traceability and authentication and digital textile printing markets.

- **Pumps & Process Solutions** supplies performance-critical components and solutions for the safe handling of fluids across the chemical, bioproduction, hygienic, energy and diversified industrial markets.

- **Climate & Sustainability Technologies** develops and supplies innovative and energy-efficient equipment and systems serving the commercial refrigeration, heating & cooling and beverage packaging equipment markets.

C0.2

(C0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
<th>Indicate if you are providing emissions data for past reporting years</th>
<th>Select the number of past reporting years you will be providing emissions data for</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1 2021</td>
<td>December 31 2021</td>
<td>No</td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

C0.3
(C0.3) Select the countries/areas in which you operate.
Argentina
Australia
Belgium
Brazil
Canada
China
Czechia
Denmark
Dominican Republic
France
Germany
India
Italy
Japan
Malaysia
Mexico
Netherlands
Poland
Russian Federation
Singapore
Slovakia
Spain
Sweden
Switzerland
Thailand
United Kingdom of Great Britain and Northern Ireland
United States of America

C0.4

(C0.4) Select the currency used for all financial information disclosed throughout your response.
USD

C0.5

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.
Operational control

C0.8

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, a Ticker symbol</td>
<td>DOV</td>
</tr>
</tbody>
</table>

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?
Yes

C1.1a
(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Our Board of Directors (the “Board”) provides oversight for the development and execution of our Environmental, Social, and Governance (“ESG”) strategy and the incorporation of sustainability-related risks and opportunities, including climate-related risks, into the Company’s strategy and operations. Dover’s CEO, who is a member of the Board, has management responsibility over ESG issues, including those related to climate change. As part of its continued focus on sustainability, the Board identifies strategic objectives for our CEO that are related to sustainability and, in discharging its oversight responsibilities, considers the Company’s progress on ESG in evaluating our CEO’s performance. In 2021, the CEO and the Board approved setting science-based targets committing to reduce Dover’s operational greenhouse gas emissions 30% and Dover’s value chain emissions 15% by 2030 from a 2019 base year. Also during 2021, the Board reviewed the results of the TCFD assessment and scenario analysis conducted in two workshops. The board approved Dover’s 2021 acquisitions of Acme Cryogenics, Inc. (“Acme”) and ECI Holding Company, LLC (“ECI”), both focused on clean energy solutions, exemplifying Dover’s CEO and Board’s strategic expansion of the Company’s sustainable product offerings. Recognizing these acquisitions and other changes to the Dover portfolio, the CEO, Board, and management made the decision to rename our Fueling Solutions segment to “Clean Energy & Fueling”, and our Refrigeration & Food Equipment segment to “Climate & Sustainability Technologies” to better reflect the markets and customers served by these businesses.</td>
</tr>
</tbody>
</table>

C1.1b

(C1.1b) Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Scope of board-level oversight</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – all meetings</td>
<td>Reviewing and guiding strategy and guiding risk management policies</td>
<td><Not Applicable></td>
<td>Our Board of Directors (the “Board”) provides oversight for the development and execution of our Environmental, Social, and Governance (“ESG”) strategy and the incorporation of sustainability-related risks and opportunities, including climate-related risks, into the Company’s strategy and operations. The Board’s oversight spans a wide array of ESG issues, including those related to climate change, health and safety, diversity and inclusion, ethics and compliance, and long-term environmental protection. Directors receive periodic updates on company-wide energy and carbon performance against targets and are regularly briefed on each segment’s operational performance including productivity and safety performance. As part of its continued focus on sustainability, the Board identifies strategic objectives for our CEO that are related to sustainability and, in discharging its oversight responsibilities, considers the Company’s progress on ESG in evaluating our CEO’s performance. The Board also has established a comprehensive enterprise risk management process to identify and manage risks, including any risks related to environmental and social issues. In 2021, the Board was kept abreast of all ESG disclosures and performance including the formalization of our commitment to science-based emissions targets by announcing a goal of reducing scope 1 and scope 2 market-based GHG emissions of 30 percent by 2030 (from a 2019 baseline year) and reducing scope 3 GHG emissions of 15 percent by 2030 (from a 2019 baseline year). Furthermore, the Board was informed of Dover’s climate risk assessment and scenario analysis aligned with the Task Force on Climate-related Financial Disclosures ("TCFD") reporting framework and the publishing of a summary of the results; and the establishment of a working group with four of our largest operating companies by emissions designed to embed sustainability considerations into product development.</td>
</tr>
</tbody>
</table>

C1.1d

(C1.1d) Does your organization have at least one board member with competence on climate-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on climate-related issues</th>
<th>Criteria used to assess competence of board member(s) on climate-related issues</th>
<th>Primary reason for no board-level competence on climate-related issues</th>
<th>Explain why your organization does not have at least one board member with competence on climate-related issues and any plans to address board-level competence in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>No</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C1.2

(C1.2) Provide the highest management-level position(s) or committee(s) with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Reporting line</th>
<th>Responsibility</th>
<th>Coverage of responsibility</th>
<th>Frequency of reporting to the board on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td><Not Applicable></td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td><Not Applicable></td>
<td>Quarterly</td>
</tr>
<tr>
<td>Sustainability committee</td>
<td><Not Applicable></td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td><Not Applicable></td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

C1.2a
(C1.2a) Describe where in the organizational structure this/these position(s) and/or committees lie, what their associated responsibilities are, and how climate-related issues are monitored (do not include the names of individuals).

Our CEO, who is a member of the Board, has management responsibility over ESG issues, including those related to climate change.

To help manage the ESG issues that impact our businesses, we established a cross-functional Sustainability Steering Committee comprised of Dover corporate, including its CEO, and operating company leaders to oversee our sustainability strategy, initiatives, target-setting, performance, and reporting. The Sustainability Steering Committee also considers water- and climate-related risks. The Sustainability Steering Committee aims to meet at least quarterly and provides an update to the Board at least annually. The Sustainability Steering Committee participated in a robust climate risk analysis this past year to understand climate-related risks and opportunities to Dover. The committee also established climate, employee health and safety, and diversity and inclusion goals. This past year, the cross-functional Sustainability Steering Committee helped track progress against the Company’s Science-Based Targets, identifying opportunities for improved performance and improved tracking.

Our Senior Vice President, Operations is responsible for managing our processes for internal reporting of energy consumption and GHG emissions. Working with operational and financial representatives from Dover's operating companies, as well as the Sustainability Steering Committee and corporate stakeholders, the Senior Vice President, Operations also coordinates our action plan to achieve energy and greenhouse gas reductions across our facilities worldwide. This group leads the implementation of Dover’s energy and greenhouse gas initiatives, monitors energy performance, and provides support, training, and tools for all of Dover’s operating companies in pursuit of energy efficiency and carbon reduction.

Our Senior Vice President, General Counsel & Secretary is responsible for managing overall sustainability and ESG reporting and strategy for Dover. She chairs the Sustainability Steering Committee and oversees implementation of the sustainability strategy as set by the CEO and the Board and leads day-to-day action around sustainability disclosure, ESG performance, and governance.

Dover is committed to creating economic value for shareholders by developing products designed to help customers meet their sustainability goals in response to evolving regulatory and environmental standards. Dover believes that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced.

C1.3

(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?

<table>
<thead>
<tr>
<th>Provide incentives for the management of climate-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

C1.3a

(C1.3a) Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Entitled to incentive</th>
<th>Type of incentive</th>
<th>Activity incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>The effective oversight and management of ESG matters is one of the CEO's strategic objectives under our Annual Incentive Plan with a weighting of 16.67% for 2021. In 2021, the specific actions included: successfully implementing the second year of a multi-year ESG strategic plan by further improving transparency and setting public facing goals on ESG topics. Actions completed in 2021 to support these objectives included seeking shareholder feedback and considering other external perspectives; conducting a climate risk assessment and scenario analysis aligned with the Task Force on Climate-related Financial Disclosures ("TCFD") reporting framework and publishing a summary of the results; and establishing a working group with four of our largest operating companies by emissions designed to embed sustainability considerations into product development.</td>
</tr>
</tbody>
</table>

C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?

Yes
(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th></th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Medium-term</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(C2.1b) How does your organization define substantive financial or strategic impact on your business?

One way that Dover defines a substantive financial or strategic impact on our business when identifying and assessing climate-related risks is an event or trend that could drive a significant positive or negative change in our sales revenue, pre-tax earnings, market position, competitive landscape or product innovation. Examples include innovative new products that would meet significant customer needs, or a sustained downturn in a key market that would reduce demand for our products and services. We use a number of criteria to identify a substantive financial or strategic impact including an evaluation of the potential impact on our finances, operations, reputation, business strategy, and legal and regulatory compliance. We also assess the likelihood and severity of the impact, and our ability to implement controls to mitigate impact. Financial impact is based on a scale which ranks impact into five categories, from a “Low” impact event with a potential financial impact of $2 million to a “Critical” impact event with a potential financial impact of $10 million. Since climate-related risks are evaluated on a longer time horizon than other enterprise risks, this scale was used as a guide together with other factors for relative risk ranking of climate-related risks and opportunities. In the future, a climate-specific risk impact scale may be developed.

Additionally, risks that impact our ability to operate that may not meet the financial thresholds defined above may also be considered to be of substantive impact. For example, shut downs of manufacturing facilities due to extreme weather events.

C2.2
(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

<table>
<thead>
<tr>
<th>Value chain stage(s) covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct operations</td>
</tr>
<tr>
<td>Upstream</td>
</tr>
<tr>
<td>Downstream</td>
</tr>
</tbody>
</table>

Risk management process

Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment

More than once a year

Time horizon(s) covered

Short-term

Medium-term

Long-term

Description of process

The assessment of risk and opportunities includes consideration of the potential impact of the risk on our overall market position, competitive landscape, product innovation, sales revenue and pre-tax earnings, as well as the likelihood and severity of the impact and mitigating controls in place. We have established a risk assessment team consisting of senior executives, which annually, with the assistance of a consultant, oversees a risk assessment made at the segment and operating company levels and, with that information in mind, performs an assessment of the overall risks our company may face, including with respect to any climate related risks. Each quarter, this team reassesses the risks at the Dover level, the severity of these risks and the status of efforts to mitigate them and reports to the Board on that reassessment. In addition to our enterprise risk assessment process, we conducted a detailed climate risk assessment process during which members of the Sustainability Steering Committee (SSC) analyzed a broad range of climate-related risks and opportunities to Dover Corporation and all our operating companies. The process began with an initial workshop to provide background on climate risk and opportunity assessments to those in the SSC new to climate risk analysis followed by the group prioritizing a broad universe of existing and emerging climate-related risks and opportunities based on criteria such as impact, likelihood, materiality to Dover, and level of stakeholder concerns. From the initial list, eight physical risks, transition risks and opportunities were prioritized for detailed consideration in a scenario analysis to further understand the potential impacts and test Dover’s resilience to these top risks and opportunities under two different climate scenarios. These risks will be considered for incorporation into the broader enterprise risk management process where risk owners manage risks based on risk appetites and regularly review risks to understand and monitor enterprise resilience. The climate risks will also be primarily managed by the Sustainability Steering Committee and designated risk owners. The process described above has been used to identify, assess and respond to physical risks and/or opportunities. For example, as part of our climate risk analysis, we consider appropriate risk and opportunity responses to support Dover resiliency to the physical risks of climate change. During a workshop with cross-functional leaders representing all key areas of Dover corporate and all sectors through operating company leaders we aligned on 2 key physical risks after identifying and assessing a wide range of physical risks, both chronic like temperature rise and sea level rise, as well as acute like disruptions from climate-related extreme weather. These were then assessed in further detail to evaluate the impact and likelihood to Dover under two different climate scenarios and to further prioritize which risks and opportunities are most pressing to respond to. For example, the two top physical risks under a business-as-usual scenario are both acute physical risks like increased frequency and severity of climate-related extreme weather events and their impact on Dover directly and our supply chain. To respond to these risks, our response planning process for natural disasters and severe weather evaluates physical risks posed by climate change for our facilities, operations, and, most importantly, the health and safety of our employees. To address these risks, our operating companies have business continuity plans in place to protect people, property, and assets from disruptions that may be posed by the physical impacts of climate change such as flooding from sea-level rise and increased incidence and strength of storms. These plans help us prepare in the event of a catastrophic event and will help ensure timely recovery of business operations. The process described above has also been used to identify, assess and respond to transitional risks and/or opportunities.

For example, we recognize the business risks that may present themselves as society considers shifting to a lower-carbon economy, as proposed by the ambitious EU Green Deal. During our climate risk assessment process, a wide variety of transition risks and opportunities were identified and prioritized in categories such as Policy and Legal, Technology, Market, and Reputation. During a workshop with cross-functional leaders representing all key areas of Dover corporate and all sectors through operating company leaders we aligned on 6 key transition risks and opportunities. These were then assessed in further detail to evaluate the impact and likelihood to Dover under two different climate scenarios and to further prioritize which risks and opportunities are most pressing to respond to. For example, the two top transition risks under a business-as-usual scenario are both acute physical risks like increased frequency and severity of climate-related extreme weather events and their impact on Dover directly and our supply chain. To respond to these risks, our response planning process for natural disasters and severe weather evaluates physical risks posed by climate change for our facilities, operations, and, most importantly, the health and safety of our employees. To address these risks, our operating companies have business continuity plans in place to protect people, property, and assets from disruptions that may be posed by the physical impacts of climate change such as flooding from sea-level rise and increased incidence and strength of storms. These plans help us prepare in the event of a catastrophic event and will help ensure timely recovery of business operations. The process described above has also been used to identify, assess and respond to transitional risks and/or opportunities.

For example, we recognize the business risks that may present themselves as society considers shifting to a lower-carbon economy, as proposed by the ambitious EU Green Deal. During our climate risk assessment process, a wide variety of transition risks and opportunities were identified and prioritized in categories such as Policy and Legal, Technology, Market, and Reputation. During a workshop with cross-functional leaders representing all key areas of Dover corporate and all sectors through operating company leaders we aligned on 6 key transition risks and opportunities. These were then assessed in further detail to evaluate the impact and likelihood to Dover under two different climate scenarios and to further prioritize which risks and opportunities are most pressing to respond to. For example, the two top transition risks under an aggressive climate mitigation scenario are risk of perceived inadequacy of climate action by key stakeholders and risk of reduced demand for fossil fuels and Dover products serving energy and retail fueling industries impacting future revenues. We believe we address these transition risks through our environmental initiatives, such as our energy and GHG reduction initiatives like our science-based target and use of renewable energy. With our science-based target approved, we are in the process of establishing a low-carbon transition plan to implement our targets and ensure we deliver on the climate action expectations of key stakeholders. In addition, operating companies in our Clean Energy & Fueling segment have also started and plan to continue to explore opportunities to diversify the types of fuel their products support as well as the associated payment and technology systems which are fuel-agnostic. Further, some of our operating companies are directly involved in industries that may be impacted by climate change policy and the associated potential for a transition to a low carbon economy, such as environmental and waste management, retail fueling, refrigeration and food equipment, packaging, and printing. A central part of our sustainability efforts is to enable our customers to reduce waste, energy, and to achieve their sustainability goals through our innovative and sustainable products. As demand is expected to grow for these products and services in the future, we anticipate significant opportunities to provide the solutions our customers depend on. At this time, there have been no material effects upon our earnings and competitive position resulting from our compliance with laws or regulations enacted or adopted relating to climate change.

<table>
<thead>
<tr>
<th>Time horizon(s) covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
</tr>
<tr>
<td>Medium-term</td>
</tr>
<tr>
<td>Long-term</td>
</tr>
</tbody>
</table>

Current regulation

Currently Dover is not subject to country or regional cap and trade regulations.

An example of current regulations that are included in our evaluation is compliance of our facilities in Europe with the EU ETS. We expect the regulatory impacts associated with climate change regulation would be primarily indirect and would result in “pass through” costs from energy suppliers, suppliers of raw materials and other services related to our operations. As an example of an indirect impact, the EU Emissions Trading System covers large emitters, many of which provide power or raw materials to Dover. As the cost for EU Allowances goes up for these large emitters, they may pass on the increased costs to the users of energy. At this time, there have been no material effects upon our earnings and competitive position resulting from our compliance with laws or regulations enacted or adopted relating to climate change. We are aware of a number of existing or upcoming regulatory initiatives intended to reduce emissions in geographies where our manufacturing and warehouse/distribution facilities are located and have evaluated the potential impact of these regulations on our businesses. We anticipate that direct impacts from current regulations will not be significant in the short- to medium-term. We expect the regulatory impacts associated with current and future climate change regulation would be primarily indirect and would result in “pass through” costs from energy suppliers, suppliers of raw materials and other services related to our operations.

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current regulation</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>

Our businesses’ domestic and international sales and operations are subject to risks associated with changes in laws, regulations and policies, including carbon emission regulations and energy efficiency and design regulations. Failure to comply with any of the foregoing could result in civil and criminal, monetary and non-monetary penalties as well as potential damage to our reputation. We cannot provide assurance that our costs of complying with new and evolving regulatory reporting requirements and current or future laws will not exceed our estimates. An example of current regulations that are included in our evaluation is compliance with laws or regulations enacted or adopted relating to climate change. We are aware of a number of existing or upcoming regulatory initiatives intended to reduce emissions in geographies where our manufacturing and warehouse/distribution facilities are located and have evaluated the potential impact of these regulations on our businesses. We anticipate that direct impacts from current regulations will not be significant in the short- to medium-term. We expect the regulatory impacts associated with current and future climate change regulation would be primarily indirect and would result in “pass through” costs from energy suppliers, suppliers of raw materials and other services related to our operations. Currently Dover is not subject to country or regional cap and trade regulations.
Emerging regulation
Relevant, always included

Our businesses’ domestic and international sales and operations are subject to risks associated with changes in laws, regulations and policies, including carbon emission regulations and climate change response and design regulations. In order to comply with new laws and regulations, we may incur costs, which could affect our profitability and thereby our reputation. We cannot provide assurance that our costs of complying with new and evolving regulatory reporting requirements and current or future laws will not exceed our estimates. For example, we are actively monitoring the proposed SEC climate-related disclosure rules and the potential implications for our business. We also recognize the business risks that may present themselves as society considers shifting to a lower-carbon economy, as proposed by the ambitious EU Green Deal. We believe we address these transition risks through our environmental initiatives, such as our energy and GHG reduction initiatives and use of renewable energy. In 2021 we published our Science-Based Targets to reduce our Scope 1 and 2 emissions by 30% and our Scope 3 emissions by 15% by 2030 from a 2019 baseline. We anticipate that direct impacts from regulatory actions will not be significant in the short- to medium-term. We expect the regulatory impacts associated with climate change regulation would be primarily indirect and would result in “pass through” costs from energy suppliers, suppliers of raw materials and other services related to our operations. As an example of an indirect impact, the EU Emissions Trading System covers large emitters, many of which provide power or raw materials to Dover. As the cost for EU Allowances goes up for these large emitters, the pass through costs for Dover may rise.

Technology
Relevant, always included

As society considers shifting to a lower-carbon economy, as proposed by the ambitious EU Green Deal and rapid shifts in technology such as electrification and advancement of clean technology occur, our business faces technology risks such as the risk of research and development (R&D) advancements not achieving goals for sustainable products and technologies and losing market share. If we cannot provide the types of sustainable products that customers expect or leverage technology to achieve emissions reduction targets we could lose revenue or miss opportunities. However, we believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. In that regard, our businesses have accelerated efforts and processes around innovation. We report on Innovation for sustainable products on our Dover corporate sustainability webpage – including a focus on how new technologies can support clean circular economy for our customers. In addition to product innovation, we plan to grow by developing digital technologies. Our Digital labs center in the greater Boston, Massachusetts area, serves as our company-wide hub for our digital initiative. The Digital Labs team is driving digital transformation across our businesses along the following three areas: (i) e-commerce – more efficient and streamlined digital customer interfaces that make it easy to do business with Dover companies; (ii) connected products – development of value-added connected, sensorized and software-automated solutions built on top of Dover’s core equipment and component offerings in our end-markets; and (iii) digital manufacturing – driving increased efficiency, quality and safety in our manufacturing operations by employing cutting-edge automation and “digital factory” solutions. We believe that the Digital Labs center will enhance the efficiency of our products and fuel our commercial growth strategy and serve as a central resource for Industrial Internet of Things (“IIOT”) and connected product initiatives. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue.

Legal
Relevant, always included

Our businesses’ domestic and international sales and operations must comply with a wide variety of laws, regulations and policies (including environmental, employment and health and safety regulations, data security laws, data privacy laws, export/import laws, tax policies such as export subsidy programs and research and experimentation credits, carbon emission regulations and energy efficiency and design regulations and other similar programs). These laws, regulations and policies are complex, change frequently, and continue to become more stringent over time and may be inconsistent across jurisdictions. Failure to comply (or any alleged or perceived failure to comply) with any of the foregoing could result in civil and criminal, monetary and non-monetary penalties as well as potential damage to our reputation and disruption to our business. We cannot provide assurance that our costs of complying with new and evolving regulatory reporting requirements and current or future laws will not exceed our estimates. As described in the regulatory sections above, climate-related compliance risk is included in our risk assessments. Currently Dover is not subject to country or regional cap and trade or other climate-related regulation. Dover was not subject to any climate-related litigation claims in 2021.

Market
Relevant, always included

Dover is constantly assessing shifts in supply and demand for certain commodities, products, and services. For example, Dover monitors the risk of reduced demand for fossil fuels and Dover products serving energy and retail fueling industries impacting future revenues. This transition risk would be particularly relevant under an aggressive climate mitigation scenario as discussed in our scenario analysis results below. We are committed to creating economic value for shareholders by developing products designed to help our customers meet their sustainability goals. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Each of Dover’s segments is dedicated to this important initiative. In our Climate & Sustainability Technologies segment, SWEP’s brazed plate heat exchangers (BPHxES) are specifically designed to maximize heating and cooling performance while simultaneously minimizing energy loss. SWEP’s BPHxES have a smaller carbon footprint, are significantly smaller and lighter than other technologies such as shell and tube and are more efficient. In the same segment, Dover Food Retail is using CO2 as a refrigerant, reducing the harmful pollutant potential of the commonly used HFC refrigerants. Markem-image, within Dover’s Imaging and Identification segment, has enabled the circular economy by innovative modular parts and auxiliary service exchange to extend the life of its products. Our leading Clean Energy & Fueling business provides charging stations for Electric Vehicles (EVs) via partnerships with ABB in Europe and with ChargePoint in North America. Providing charging stations for EVs, as well as other alternative clean fueling solutions, creates an opportunity to reduce GHGs from transportation. Under our Pumps and Process Solutions segment, MAAG GROUP’s recycling processing solutions address the technical challenges provided during a focus on how new technologies can support clean circular economy for our customers. In addition to product innovation, we plan to grow by developing digital technologies. Our Digital labs center in the greater Boston, Massachusetts area, serves as our company-wide hub for our digital initiative. The Digital Labs team is driving digital transformation across our businesses along the following three areas: (i) e-commerce – more efficient and streamlined digital customer interfaces that make it easy to do business with Dover companies; (ii) connected products – development of value-added connected, sensorized and software-automated solutions built on top of Dover’s core equipment and component offerings in our end-markets; and (iii) digital manufacturing – driving increased efficiency, quality and safety in our manufacturing operations by employing cutting-edge automation and “digital factory” solutions. We believe that the Digital Labs center will enhance the efficiency of our products and fuel our commercial growth strategy and serve as a central resource for Industrial Internet of Things (“IIOT”) and connected product initiatives. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue.

Reputation
Relevant, always included

Dover considers reputational risk to be relevant because sustaining and enhancing its reputation as a responsible performer with respect to climate action is important to its relationships with key stakeholders (e.g., employees, investors, customers, and the communities we operate in). The Company’s entrepreneurial business model encourages, promotes and fosters deep customer engagement and collaboration, which has led to Dover’s well-established and valued reputation for providing superior customer service and industry-leading product innovation. The success of new and improved products, digital solutions and support services depends on their initial and continued acceptance by our customers. Certain of our businesses sell in industries that are characterized by rapid technological changes, frequent new product introductions, changing industry standards and corresponding shifts in customer demand, which may result in unpredictable product transitions, shortened life cycles and increased importance of being first to market. Failure to correctly identify and predict customer needs and preferences including for sustainability, to deliver high quality, innovative and competitive products to the market, to adequately protect our intellectual property rights or to acquire rights to third-party technologies and to stimulate customer demand for, and convince customers to adopt, new products, digital solutions and support services could adversely affect our consolidated results of operations, including our continuing financial condition and cash flows. Reputation as a strong sustainability performer may also have an impact on the ability to attract and retain top talent and this is considered in climate-related risk assessments and as part of our Talent strategy.

Acute physical
Relevant, always included

While Dover has a global portfolio, approximately 75% of Dover’s facilities are located in the US and Europe. Risk analysis indicates potential impacts in low lying areas with specific high-risk facilities. Dover incorporates physical risk analysis into business continuity planning. Direct and indirect chronic physical risks such as temperature increase or droughts are the types of risks that would likely help to reduce possible physical risks associated with climate change going forward. Under our Pumps and Process Solutions segment, MAAG GROUP’s recycling processing solutions address the technical challenges provided during a focus on how new technologies can support clean circular economy for our customers. In addition to product innovation, we plan to grow by developing digital technologies. Our Digital labs center in the greater Boston, Massachusetts area, serves as our company-wide hub for our digital initiative. The Digital Labs team is driving digital transformation across our businesses along the following three areas: (i) e-commerce – more efficient and streamlined digital customer interfaces that make it easy to do business with Dover companies; (ii) connected products – development of value-added connected, sensorized and software-automated solutions built on top of Dover’s core equipment and component offerings in our end-markets; and (iii) digital manufacturing – driving increased efficiency, quality and safety in our manufacturing operations by employing cutting-edge automation and “digital factory” solutions. We believe that the Digital Labs center will enhance the efficiency of our products and fuel our commercial growth strategy and serve as a central resource for Industrial Internet of Things (“IIOT”) and connected product initiatives. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue.

Chronic physical
Relevant, always included

While Dover has a global portfolio, approximately 75% of Dover’s facilities are located in the US and Europe. Risk analysis indicates potential impacts in low lying areas with specific high-risk sites identified. Dover incorporates physical risk analysis into business continuity planning. Direct and indirect chronic physical risks such as temperature increase or droughts are the types of risks that would likely help to reduce possible physical risks associated with climate change going forward. Under our Pumps and Process Solutions segment, MAAG GROUP’s recycling processing solutions address the technical challenges provided during a focus on how new technologies can support clean circular economy for our customers. In addition to product innovation, we plan to grow by developing digital technologies. Our Digital labs center in the greater Boston, Massachusetts area, serves as our company-wide hub for our digital initiative. The Digital Labs team is driving digital transformation across our businesses along the following three areas: (i) e-commerce – more efficient and streamlined digital customer interfaces that make it easy to do business with Dover companies; (ii) connected products – development of value-added connected, sensorized and software-automated solutions built on top of Dover’s core equipment and component offerings in our end-markets; and (iii) digital manufacturing – driving increased efficiency, quality and safety in our manufacturing operations by employing cutting-edge automation and “digital factory” solutions. We believe that the Digital Labs center will enhance the efficiency of our products and fuel our commercial growth strategy and serve as a central resource for Industrial Internet of Things (“IIOT”) and connected product initiatives. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue.

C2.3a

Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

Yes
Risk 1

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver

| Emerging regulation | Carbon pricing mechanisms |

Primary potential financial impact
Increased indirect (operating) costs

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
Increased pricing of GHG emissions could potentially result in increased costs for compliance for our businesses. Our businesses’ domestic and international sales and operations are subject to risks associated with changes in laws, regulators and policies, including carbon emission regulations and energy efficiency and design regulations. Failure to comply with any of the foregoing could result in civil and criminal, monetary and non-monetary penalties as well as potential damage to our reputation. An example of an emerging carbon pricing mechanism is the EU Green Deal and other emerging carbon tax or ETS schemes. Our current facilities in the EU account for approximately 6% of our total Scope 1 and 2 emissions. We cannot provide assurance that our costs of complying with new and evolving regulatory reporting requirements and current or future laws will not exceed our estimates.

Time horizon
Short-term

Likelihood
Very likely

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
80000

Potential financial impact figure – maximum (currency)
1500000

Explanation of financial impact figure
Dover modelled potential carbon prices under two climate scenarios in order to estimate a range of potential impacts. The minimum impact assumes a $6 carbon price by 2050 under a “Red” or business as usual scenario, and the maximum impact assumes a $100 carbon price by 2050 under a “Green” or two-degree climate scenario. Pricing for the green scenario is aligned with the IMAGE – SSP1 – 2.6 data set, and pricing for the red scenario is aligned with the GCAM4 - SSP4-6.0 data set. Average annualized cost to Dover was calculated by projecting emissions (Scope 1 and 2) decreases linearly aligned with science-based targets (30% decrease by 2030), multiplying annual emissions by projected carbon prices, discounting the cost back to present value (using a 5% discount rate) and taking an average over 30 years. In the minimum “Red” scenario, an additional cost of $80,000 is approximately 0.001% of Dover’s 2021 annual revenue of ~$7.9B. In the “Green” two-degree scenario, an additional cost of $1,500,000 is approximately 0.02% of Dover’s 2021 annual revenue.

Cost of response to risk
2000000

Description of response and explanation of cost calculation
Dover tracks regulatory updates and evaluates potential risk for increased costs in high risk areas due to climate legislation or taxes. We attempt to control such costs through fixed-price contracts with suppliers and various other programs, such as our global supply chain activities. Dover has also set science-based targets for reducing Scope 1 and 2 emissions 30% by 2030 and Scope 3 emissions 15% by 2030 relative to a 2019 baseline. Implementation of the science-based targets will reduce Dover’s risk from carbon pricing. Details including costs of implementation are being evaluated, however we have provided an initial estimate in the range of $1 to $3 million and used a midpoint of $2 million as the cost of response to risk above.

Comment
There are no costs associated with regulatory tracking or supply chain activities; these are part of normal business activities. Costs of responses that will be associated with implementation of our science-based targets are being evaluated.

Risk 2

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver

| Market | Increased cost of raw materials |

Primary potential financial impact
Other, please specify (Increased logistics costs)

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
Carbon pricing could cause an increase in upstream annual logistics costs under a “Green” or two-degree climate scenario. Logistics costs represent a small but significant
portion of costs and Scope 3 emissions (~3% of Scope 3 emissions). For example, a carbon price assumption of $100/ton by 2050 would result in an average additional annual cost of $7.5 million, or $230M cumulative cost over the next 30 years assuming no changes in emissions intensity of logistics.

Time horizon
Medium-term

Likelihood
About as likely as not

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
400000

Potential financial impact figure – maximum (currency)
750000

Explanation of financial impact figure
The minimum impact assumes a $6 carbon price by 2050 under a "Red" or business as usual scenario, and the maximum impact assumes a $100 carbon price by 2050 under a "Green" or two-degree climate scenario. Pricing for the green scenario is aligned with the IMAGE – SSP1 – 2.6 data set, and pricing or the red scenario is aligned with the GCAM4 - SSP4-6.0 data set. Average annualized cost to Dover was calculated by projecting emissions decreases linearly aligned with science-based targets (15% decrease by 2030), multiplying annual emissions by projected carbon prices, discounting the cost back to present value (using a 5% discount rate) and taking and average over 30 years.

Cost of response to risk
100000

Description of response and explanation of cost calculation
Dover is attempting to decrease the average length of haul by strategically moving relevant production closer to customers. This would reduce Dover's exposure to increased logistics costs resulting from carbon pricing by decreasing transportation emissions (scope 3). If carbon pricing were implemented and logistics costs increased, we would also likely be able to pass some of this cost on to our end customers through pricing. Cost to implement is estimated based on potential costs of one supply chain optimization project at a specific operating company based on a Dover-led study designed to reduce the average length of haul as described above. This provides a representative starting point for potentially broader actions to mitigate this risk. Dover has also set science-based targets for reducing Scope 1 and 2 emissions 30% by 2030 and Scope 3 emissions 15% by 2030 relative to a 2019 baseline. Implementation of the science-based targets will reduce Dover's risk from carbon pricing and Scope 3 mitigation actions as described above will help reduce risk of increased logistics costs. Details including costs of implementation are being evaluated.

Comment

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver

<table>
<thead>
<tr>
<th>Technology</th>
<th>Unsuccessful investment in new technologies</th>
</tr>
</thead>
</table>

Primary potential financial impact
Decreased revenues due to reduced demand for products and services

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
Our operating results depend in part on the timely development and commercialization, and customer acceptance, of new and enhanced products and services based on technological innovation. The success of new and improved products, digital solutions and support services depends on their initial and continued acceptance by our customers. Certain of our businesses sell in industries that are characterized by rapid technological changes, frequent new product introductions, changing industry standards and corresponding shifts in customer demand, which may result in unpredictable product transitions, shortened life cycles and increased importance of being first to market. For example, many of our operating companies are directly involved in industries that will likely be impacted by climate change policy and the associated potential for a transition to a low carbon economy, such as environmental and waste management, retail fueling, refrigeration and food equipment, packaging, and printing. Failure to correctly identify and predict customer needs and preferences, to deliver high quality, innovative, sustainable and competitive products to the market, to adequately protect our intellectual property rights or to acquire the rights to third-party technologies and to stimulate customer demand for, and convince customers to adopt, new products and services could adversely affect our consolidated results of operations, financial condition and cash flows. In addition, we may experience difficulties or delays in the research, development, production and/or marketing of new products, digital solutions and support services which may prevent us from recouping or realizing a return on the investments required to continue to bring new products and services to market.

Time horizon
Long-term

Likelihood
Unlikely

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure
The potential financial impact of technology risk is provided as an order of magnitude estimate based on a percentage of Dover's revenue. Dover's revenue was $7.9 billion in 2021, $797 million is 1% of Dover's 2021 revenue.

Cost of response to risk
31560000

Description of response and explanation of cost calculation
The cost provided represents one fifth of the total R&D spend; our total R&D spend consolidates all of our business segments. Dover does not disclose research and development spending per segment. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue. We are committed to creating economic value for shareholders by developing products designed to help our customers meet their sustainability goals in response to evolving regulatory and environmental standards. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. In our Climate & Sustainability Technologies segment, SWEP, a manufacturer of brazed plate heat exchangers, focuses on the conversion to sustainable and renewable energy usage in heat transfer. Heat exchangers transfer heat from one media to another, causing the desired temperature change. But in this process, some of the energy can be wasted – the exact amount depends, in large part, upon the type of exchanger used. Brazed plate heat exchangers (BPHEs) by SWEP are specifically designed to maximize heating and cooling performance while simultaneously minimizing energy loss. SWEP's BPHEs are extremely compact compared with other technologies. In addition, BPHEs have a smaller carbon footprint, are significantly smaller and lighter than other technologies such as shell and tube and, more importantly, are more efficient.

Comment

Identifier
Risk 4

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver
Please select

Primary potential financial impact
Other, please specify (Decreased revenue in Dover businesses that have revenue from Oil & Gas sector.)

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
Under a two-degree aggressive climate mitigation scenario based on estimates from the International Energy Agency (IEA) Sustainable Development Scenario global oil demand is projected to potentially decrease by approximately 50% by 2050. If this scenario were to occur, this decrease has the potential to disrupt the energy and retail fueling industry and decrease demand for some of Dover's products. In addition, electric vehicle adoption could potentially increase significantly over the course of the next 30 years, creating further pressure on the energy and retail fueling industry and causing a shift in demand towards products tailored to renewables and EV charging. These changes in demand are being driven by policy pressure such as countries beginning to phase out the sale of internal combustion engine vehicles, and by the decrease in lithium-ion battery prices. Dover operating companies that have revenue from the oil and gas sector and could be impacted under this scenario by the energy transitions described above include the following: Dover Precision Components (DPC): up-, mid-, downstream OPW: participates in oil and gas supply chain in mostly mid- and downstream transportation Pump Solutions Group (PSG): participates in mid- and downstream Dover Fueling Solutions (DFS): specialized in retail fueling at convenience stores.

Time horizon
Long-term

Likelihood
About as likely as not

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure

Cost of response to risk
0

Description of response and explanation of cost calculation
Dover companies such as Dover Fueling Solutions (DFS) actively evaluate market trends and have strategies to grow existing business in alternative fuels like CNG, hydrogen, and electric vehicle charging to mitigate any decline in conventional gasoline fueling. DFS provides charging stations for Electric Vehicles (EVs) via partnerships with ABB in Europe and with ChargePoint in North America. Providing charging stations for EVs, as well as other alternative clean fueling solutions and associated hardware and software solutions, creates an opportunity to reduce GHGs from transportation and mitigate the risk of decline in reduced demand for fossil fuels. The risk of declining fossil fuel use is also mitigated by increased investment in software and systems, including payment processing and site digitalization, which would be relevant
regardless of shifts in fuel (for example, from gasoline to electric vehicle charging). We intend to evaluate the results of our recently conducted scenario analysis to determine how risk responses will integrate with our broader enterprise risk management efforts.

Comment

Identifier
Risk 5

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver
Please select

Primary potential financial impact
Other, please specify (Risk to sustain and enhance Dover's reputation as a responsible climate action performer to stakeholders (e.g., employees, investors, customers, and the communities we operate in).)

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
As climate change continues to grow as a concern in stakeholders’ minds as evidenced by the SEC’s “Enhancement and Standardization of Climate-Related Disclosures for Investors” proposed rule changes on climate-related disclosure , ESG factors may become increasingly relevant to the capital markets and to stakeholders such as employees and customers. Addressing these factors in a manner that is consistent with the expectations of key stakeholders and demonstrating prudent management of ESG as a material risk and opportunity will be essential to protecting and enhancing our brand reputation and maintaining strong relationships with these stakeholders. Many Dover customers are undertaking efforts to reduce emissions, such as Shell committing to net zero Scope 1 and Scope 2 emissions by 2050 and Walmart committing to zero emissions across global operations by 2040. As more customers increase their climate efforts and more employees and investors focus on ESG as an important measure of a company’s performance and success, industrial manufacturers like Dover will need to demonstrate not only that they are strong operators but that they are taking a responsible approach to addressing ESG risks and opportunities and are accordingly well-positioned to capture economic value from these efforts. Our efforts to address ESG factors includes, most recently, our adoption of science-based targets to reduce our Scope 1 and 2 emissions 30% by 2030 from a 2019 base year and to reduce our Scope 3 emissions 15% by 2030. Making progress against these targets over the next 10 years will be essential to protecting our reputation with key stakeholders.

Time horizon
Medium-term

Likelihood
Unlikely

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure

Cost of response to risk
0

Description of response and explanation of cost calculation
Dover has set new 2030 energy and emissions goals. Our goals are approved science-based targets in line with a well-below 2°C trajectory. Dover commits to reduce our direct greenhouse gas emissions from operations (Scope 1 and 2) 30% by 2030 from a 2019 base year and reduce our indirect (Scope 3) emissions 15% by 2030. We will report progress against these goals on our energy and emissions webpage later this year and annually through 2030. Successful implementation of our science-based targets will demonstrate Dover’s commitment to climate action and sustainability and reduce the risk of any negative reputational risk around climate. Costs of responses that will be associated with implementation of our science-based targets are being evaluated. We intend to evaluate the results of our recently conducted scenario analysis to determine how risk responses will integrate with our broader enterprise risk management efforts.

Comment

Identifier
Risk 6

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver
Please select

Primary potential financial impact
Other, please specify (Risk of disruptions to critical suppliers due to hurricanes, flooding or other climate-related extreme weather events.)

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
The majority of Dover’s supplier spend is in the Americas and Europe, each of which are regions with significant exposure to climate-related extreme weather events such as wildfire, hurricanes, and floods. The remaining supplier spend is located in Asia, which has high typhoon risk. Extreme weather events have already caused disruptions.
in Dover’s supply chain, with a recent example being Texas’ extreme winter weather in 2021 impacting chemical plants and metal suppliers. Because of the diverse and customized nature of Dover’s business and the specific parts that they require, there are certain instances where specific parts are only manufactured by one facility. This creates a risk of operational disruption in the case of an extreme weather event pausing production at a critical facility.

Time horizon
Short-term

Likelihood
About as likely as not

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure

Cost of response to risk
0

Description of response and explanation of cost calculation
Dover incorporates physical risk analysis into business continuity planning. Physical risks are assessed annually, particularly around extreme weather events like hurricanes and floods. We work with our insurers to identify potential acute risks to our assets. We have incorporated mitigation measures, through our business continuity plans to protect people, property, and assets from disruptions that may be posed by the physical impacts of climate change such as flooding from sea-level rise and increased incidence and strength of storms. These plans help us prepare in the event of a catastrophic event and will help ensure timely recovery of business operations. We have also begun consideration of the risk of extreme weather events to cause supply chain disruption and will continue to evaluate and enhance existing business continuity planning to more fully incorporate this risk. We intend to evaluate the results of our recently conducted scenario analysis to determine how risk responses will integrate with existing business continuity plans and our broader enterprise risk management efforts.

Comment

Identifier
Risk 7

Where in the value chain does the risk driver occur?
Please select

Risk type & Primary climate-related risk driver
Please select

Primary potential financial impact
Other, please specify (Risk of increased frequency and severity of storms shutting down operations.)

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
As a global company with many coastal facilities, Dover is at increased risk of water related extreme weather events. Many of Dover’s locations in the US Gulf coast, the US Atlantic coast, and southeast Asia are at risk of hurricanes, which are projected to increase by 45-87% by 2100 with moderate increases in greenhouse gases. Scientists also project that 100-year storms could begin happening every 5 to 10 years if climate change continues as current rates. Both of these risks could pose threats to Dover’s locations in Europe and Singapore, which are at risk of flooding.

Time horizon
Short-term

Likelihood
About as likely as not

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure

Cost of response to risk
0

Description of response and explanation of cost calculation
Dover incorporates physical risk analysis into business continuity planning and siting new facilities. Physical risks are assessed annually, particularly around extreme
weather events like hurricanes and floods. We work with our insurers to identify potential acute risks to our assets. We have incorporated mitigation measures, through our business continuity plans to protect people, property, and assets from disruptions that may be posed by the physical impacts of climate change such as flooding from sea-level rise and increased incidence and strength of storms. These plans help us prepare in the event of a catastrophic event and will help ensure timely recovery of business operations. We intend to evaluate the results of our recently conducted scenario analysis to determine how risk responses will integrate with existing business continuity plans and our broader enterprise risk management efforts.

Comment

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

Identifier
Opp1

Where in the value chain does the opportunity occur?
Downstream

Opportunity type
Products and services

Primary climate-related opportunity driver
Other, please specify (Research and development advancements achieving goals for sustainable products and technologies, resulting in growing market share.)

Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
Dover’s revenue is relatively evenly spread across each of its 5 segments: Engineered Products, Clean Energy & Fueling, Imaging and Identification, Pumps and Process Solutions, and Climate & Sustainability Technologies. Assuming under a “Green” or two-degree climate scenario like RCP 2.6 that customers are driven by regulatory and consumer pressure to seek out low-carbon products, Dover predicts that we could increase sales of sustainable products. An example of Dover pursuing opportunities in our Climate & Sustainability Technologies segment is our development of Advanced Second Nature (SN) refrigeration systems that require less refrigerant charge than standard refrigeration. Methodology for estimating avoided emissions from Advanced Second Nature Systems is provided here. Assumptions include: # of units sold, typical direct expansion (DX) system requires charge size of 1100 lbs with an average leak rate of 0.2 (20% recharge annually), and Advanced Second Nature (SN) system requires charge size of 600 with an average leak rate of 0.05 (5% recharge annually). Difference in emissions associated with typical DX and SN units multiplied by the number of units sold represents the avoided emissions. They use carbon dioxide-based refrigerant with a global-warming potential (GWP) rating of 1. By comparison, a hydrofluorocarbon-based refrigerant can have a GWP rating as high as 3985. Additionally, Belvac machinery and manufacturing technologies lead the world in the reduction of aluminium usage in beverage containers making more cans and bottles with less metal while maintaining strength and durability. In addition to the reduction in overall global aluminium usage, Belvac’s light weighting efforts in aluminium beverage containers make them more affordable and, in turn, they displace more of the usage of glass containers which have a significantly less successful recycling processes. Aluminium is 100% recyclable and has the highest recycling rates. A twelve-ounce aluminium can has approximately 45% lower associated emissions than a twelve-ounce glass bottle and 49% lower associated emissions than a twenty-ounce plastic bottle.

Time horizon
Medium-term

Likelihood
Virtually certain

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
79000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure
The potential financial impact of low-carbon product opportunities is provided as an order of magnitude estimate based on a percentage of Dover’s revenue. Dover’s revenue was $7.9 billion in 2021. $67 million is 1% of Dover’s 2021 revenue. The actual revenue could be higher or lower.

Cost to realize opportunity
31560000

Strategy to realize opportunity and explanation of cost calculation
Dover is committed to creating economic value for shareholders by developing products designed to help customers meet their sustainability goals in response to evolving regulatory and environmental standards. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. In our Climate & Sustainability Technologies segment, SWEP, a manufacturer of brazed plate heat exchangers, focuses on opportunities created by the conversion to sustainable and renewable energy usage in heat transfer. Its Passive Cooling Unit, for example, uses natural cooling
from the ground or groundwater to remove excess heat from interiors with the process requiring only a small amount of electricity for the circulation pumps which make this solution both very energy efficient and cost effective. SWEP Brazed plate heat exchanges are extremely compact and have a smaller carbon footprint compared with other technologies such as shell and tube. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue. The cost provided represents one fifth of the total R&D spend; our total R&D spend consolidates all of our business segments. Dover does not disclose research and development spending per segment. As described above, a case study of realizing this opportunity is R&D investment pursuing sustainability opportunities in our refrigeration and food equipment segment as seen in SWEP's efficient brazed plate heat exchanges. R&D investment in products with dedicated sustainability benefits like this allows Dover to capitalize on the opportunity of increased revenues resulting from increased demand for products and services with sustainability benefits.

Comment

Identifier
Opp2

Where in the value chain does the opportunity occur?
Downstream

Opportunity type
Products and services

Primary climate-related opportunity driver
Development of new products or services through R&D and innovation

Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
Dover’s revenue is relatively evenly spread across each of its 5 segments: Engineered Products, Clean Energy & Fueling, Imaging & Identification, Pumps & Process Solutions, and Climate & Sustainability Technologies. Assuming under a “Green” or two-degree climate scenario like RCP 2.6 that customers are driven by regulatory and consumer pressure to seek out low-carbon products, Dover predicts that we could increase sales of sustainable products. An example of Dover pursuing opportunities in our pumps and process solutions segment is Hydro Systems’ proportioning, dosing and dispensing solutions contribute to the long-term well-being of people and the environment. Its products are used to accurately dilute and/or dispense concentrated cleaning chemicals so they can be safely and effectively used in commercial cleaning applications, such as: food service, health care, supermarket, institutional, school, building service contractor, and industrial markets. Hydro’s products promote environmental-responsibility, cost control, worker safety, and proper chemical performance - especially important in bacteria-control areas like retail-food and health care.

The innovative EvoClean dispenser is the world’s first venturi-based (the reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe), water-powered dispenser for on-premise laundry applications. Unlike other laundry dispensers, EvoClean does not require squeeze tubes driving dramatic reductions in service parts and maintenance costs. Its delivery performance is precise, and it will not under-dose chemicals. This gives laundries, less downtime, less re-wash and more predictable, clean results with every wash. Hydro’s EvoClean is 50% lighter than other traditional peristaltic pumps, leading to simplified installation and maintenance. The system is available in four, six and eight product configurations for two-flow rates. Users can even access reports that provide valuable data on product usage, costs per formula and more through the controller saving even more money and resources. Additional Sustainability Benefits include: Reduced Energy Consumption (EvoClean uses 85% less energy than traditional laundry dispensers, because it does not use AC or DC motors. This equates to 38 kWh saved per year. Example Savings Calculation for Chemical Companies 9,000 locations x 2 dispensers average per location = 18,000 total EvoClean units 38 kWh x 18,000 units = 684,000 kWh/ year.

Time horizon
Medium-term

Likelihood
Virtually certain

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
79000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure
The potential financial impact of low-carbon product opportunities is provided as an order of magnitude estimate based on a percentage of Dover’s revenue. Dover’s revenue was $7.9 billion in 2021. $67 million is 1% of Dover’s 2021 revenue. The actual revenue could be higher or lower.

Cost to realize opportunity
31560000

Strategy to realize opportunity and explanation of cost calculation
Dover is committed to creating economic value for shareholders by developing products designed to help customers meet their sustainability goals in response to evolving regulatory and environmental standards. We believe that sustainability-driven innovation presents a significant growth opportunity while contributing positively to enhanced resource efficiency and reduced waste. Accordingly, over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. We continue to prioritize innovation and research and development activities; our R&D spend in 2021 represented 2.0% of our annual revenue. The cost provided represents one fifth of the total R&D spend; our total R&D spend consolidates all of our business segments. Dover does not disclose research and development spending per segment. As described above, a case study of realizing this opportunity is R&D investment pursuing sustainability opportunities in our pumps and process solutions segment as seen in Hydro Systems’ proportioning, dosing and dispensing solutions like the innovative EvoClean dispenser which contributes to the long-term well-being of people and the environment. R&D investment in products with dedicated sustainability benefits like this allows Dover to capitalize on the opportunity of increased revenues resulting from increased demand for products and services with sustainability benefits.
Downstream

Opportunity type
Energy source

Primary climate-related opportunity driver
Use of lower-emission sources of energy

Primary potential financial impact
Reduced indirect (operating) costs

Company-specific description
From 2010 through 2020, Dover OpCos have implemented energy efficiency and renewable energy initiatives that were responsible for reducing more than 200,000 tons of
C02e. Dover is currently using approximately 11% renewable electricity and is exploring opportunities to continue to shift to low-emission energy sources and fuels. Dover is
also considering leveraging an internal carbon price to fund investment, which has become increasingly common in the manufacturing industry at prices around $30/ton.
Dover is also exploring opportunities to invest indirectly in renewable energy assets through virtual purchase power agreements, which can help reduce energy costs,
carbon liability, and be scaled to cover 100% of the business. In addition, Dover intends to evaluate the results of our recently conducted scenario analysis to determine
which strategies for reducing energy cost and reducing carbon emissions provide the most value.

Time horizon
Medium-term

Likelihood
Virtually certain

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
600000

Potential financial impact figure – maximum (currency)
6000000

Explanation of financial impact figure
Dover is in the process of evaluating opportunities to reduce energy spend through efficiency measures and switching to renewable energy as part of implementation of our
science-based target. While exact costs have not been quantified yet, Dover’s annual energy spend is approximately $30 million, so a hypothetical range of potential
 savings could range from 2% ($600,000) to 20% ($6,000,000) of energy spend that could be saved through efficiency and fuel switching activities.

Cost to realize opportunity
1400000

Strategy to realize opportunity and explanation of cost calculation
From 2010 through 2020, Dover OpCos implemented energy efficiency and renewable energy initiatives that were responsible for reducing more than 200,000 tons of
C02e. Total investments in this round of efficiency initiatives were approximately $7 million over 5 years. Dover is in the process of evaluating opportunities to reduce
energy spend through efficiency measures and switching to renewable energy as part of implementation of our science-based target. While exact costs have not been
quantified yet, the average annual cost ($7 million / 5 = $1.4 million) of the first round of efficiency initiatives serves as a starting point for expected costs to realize this
opportunity. Dover is currently using approximately 11% renewable electricity and is exploring opportunities to continue to shift to low-emission energy sources and fuels.
Dover is also considering leveraging an internal carbon price to fund investment, which has become increasingly common in the manufacturing industry at prices around
$30/ton. Dover is also exploring opportunities to invest indirectly in renewable energy assets through virtual purchase power agreements, which can help reduce energy
costs, carbon liability, and be scaled to cover 100% of the business.

Comment

C3. Business Strategy

C3.1
(C3.1) Does your organization's strategy include a transition plan that aligns with a 1.5°C world?

Row 1

Transition plan
Yes, we have a transition plan which aligns with a 1.5°C world

Publicly available transition plan

Mechanism by which feedback is collected from shareholders on your transition plan
No

Description of feedback mechanism
We do not have a feedback mechanism in place, and we do not plan to introduce one within the next two years

Frequency of feedback collection

Attach any relevant documents which detail your transition plan (optional)

Explain why your organization does not have a transition plan that aligns with a 1.5°C world and any plans to develop one in the future

Explain why climate-related risks and opportunities have not influenced your strategy

(C3.2)

(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
<th>Primary reason why your organization does not use climate-related scenario analysis to inform its strategy</th>
<th>Explain why your organization does not use climate-related scenario analysis to inform its strategy and any plans to use it in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, qualitative and quantitative</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C3.2a

(C3.2a) Provide details of your organization's use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenario analysis coverage</th>
<th>Scenario analysis alignment of scenario</th>
<th>Temperature parameters, assumptions, analytical choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical climate scenarios RCP 8.5</td>
<td>Company-wide</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

For Dover's TCFD scenario analysis conducted in FY21, several commonly used climate scenarios were evaluated and two were selected as appropriate to Dover's business. The RCP8.5 scenario was selected as a business-as-usual scenario to test resilience to physical risks of climate change and certain assumptions from the SSPs (carbon pricing) and IEA STEPS (energy mix), 2050 was selected as a time horizon. Our science-based target (SBT) is 2030 and we recognize that a 10-year time horizon is insufficient to evaluate the physical risks of climate change. The analysis considered all areas of the organization, including all regions where Dover operates globally and all five segments. A broad stakeholder group from the Dover Sustainability Steering Committee (SSC) was engaged for the workshops to capture input from all areas of the organization. During the workshop, the SSC evaluated each risk and opportunity for likelihood and impact to Dover's business and the risk or opportunity occur. The top risks and opportunities, and the associated drivers, were assessed under the scenarios. As this was the first global scenario analysis, assessment of risks and opportunities under each scenario was primarily qualitative with high-level quantitative modelling of certain risks. We leveraged assumptions from desktop research, existing peer reviewed scientific literature, and Dover company data to make informed ratings of each risk and opportunity. Physical risks such as increased frequency and severity of extreme weather ceasing operations were found to have significant potential impact under the RCP8.5 scenario. Transition risks such as risk of perceived inadequacy of climate action by key stakeholders and carbon pricing were found to have moderate potential impact to Dover under the RCP8.5 scenario. Given the relatively moderate transition risks under RCP8.5, the analysis informed Dover's decision to set a SBT and pursue innovation for sustainable/low-carbon products. Both actions will enable Dover to remain resilient to transition and reputational risks that will still be present under an RCP8.5 scenario, though less pronounced than under RCP2.6. The results indicating higher impact from physical risks will be further used to enhance current risk management practices and establish risk responses and procedures for climate-related risks and opportunities not currently managed under existing risk management practices.

| Physical climate scenarios RCP 2.6 | Company-wide | <Not Applicable> |

For Dover's TCFD scenario analysis conducted in FY21, several commonly used climate scenarios were evaluated and two were selected as appropriate to Dover's business. The RCP2.6 scenario was selected as a business-as-usual scenario to test resilience to physical risks of climate change and certain assumptions from the SSPs (carbon pricing) and IEA STEPS (energy mix). 2050 was selected as a time horizon. Our science-based target (SBT) is 2030 and we recognize that a 10-year time horizon is insufficient to evaluate the physical risks of climate change. The analysis considered all areas of the organization, including all regions where Dover operates globally and all five segments. A broad stakeholder group from the Dover Sustainability Steering Committee (SSC) was engaged for the workshops to capture input from all areas of the organization. During the workshop, the SSC evaluated each risk and opportunity for likelihood and impact to Dover's business and the risk or opportunity occur. The top risks and opportunities, and the associated drivers, were assessed under the scenarios. As this was the first global scenario analysis, assessment of risks and opportunities under each scenario was primarily qualitative with high-level quantitative modelling of certain risks. We leveraged assumptions from desktop research, existing peer reviewed scientific literature, and Dover company data to make informed ratings of each risk and opportunity. Physical risks such as increased frequency and severity of extreme weather ceasing operations were found to have low to moderate potential impact to Dover under the RCP2.6 scenario. Transition risks such as the risk of perceived inadequacy of climate action by key stakeholders were found to have low to moderate potential impact under the RCP2.6 scenario. The scenario analysis informed in-part Dover's decision to set a SBT to mitigate the relatively higher transition risks possible under a RCP2.6 scenario and pursue innovation for sustainable products. Both actions will enable Dover to remain resilient to transition risks that will be more prevalent under RCP2.6. Dover is evaluating how the scenario analysis results can align with a low-carbon transition plan to implement 2030 targets. The results will enhance existing risk management practices and establish risk responses and procedures for climate-related risks and opportunities not currently managed under existing risk management practices.

C3.2b
Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.

Row 1

Focal questions

What may be the potential implications for Dover’s business objectives and strategies and resilience under different potential future climate scenarios?

Results of the climate-related scenario analysis with respect to the focal questions

We found typically low to moderate impact of climate risks, with higher transition risk under the 2°C scenario and higher physical risk under the 4°C scenario and similar levels of opportunity and risk under both scenarios. We believe our plan to achieve our new 2030 science-based targets helps us with resilience to climate risks under both scenarios. Specifically, our businesses have business continuity plans in place to protect people, property, and assets from disruptions that may be posed by the physical impacts of climate change such as flooding from sea-level rise and increased incidence and strength of storms. These plans help us prepare in the event of a catastrophic event and will help ensure timely recovery of business operations.

For our transition risks, our science-based targets, our energy and GHG reduction initiatives and our expanding presence in clean fuels help us address our transition risks.

<table>
<thead>
<tr>
<th>(C3.2b) Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.</th>
</tr>
</thead>
</table>

C3.3 Describe where and how climate-related risks and opportunities have influenced your strategy.

<table>
<thead>
<tr>
<th>Description of influence</th>
<th>Have climate-related risks and opportunities influenced your strategy in this area?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Yes</td>
</tr>
<tr>
<td>Supply chain and/or value chain</td>
<td>Yes</td>
</tr>
<tr>
<td>Investment in R&D</td>
<td>Yes</td>
</tr>
<tr>
<td>Operations</td>
<td>Yes</td>
</tr>
</tbody>
</table>
C3.5

(C3.5) In your organization’s financial accounting, do you identify spending/revenue that is aligned with your organization’s transition to a 1.5°C world?

No, and we do not plan to in the next two years

C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?

Absolute target

C4.1a

(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Abs 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year target was set</td>
<td>2020</td>
</tr>
<tr>
<td>Target coverage</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Scope(s)</td>
<td>Scope 1, Scope 2</td>
</tr>
<tr>
<td>Scope 2 accounting method</td>
<td>Location-based</td>
</tr>
<tr>
<td>Scope 3 category(ies)</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
Dover Corporation committed to reduce absolute scope 1 and 2 market-based GHG emissions 30% by 2030 from a 2019 base year.

We have a Science-Based Target roadmap to achieve our 2030 goals that includes working with our Operating Companies to research and execute on financially-sound energy efficiency and renewable energy projects.

List the emissions reduction initiatives which contributed most to achieving this target

<Not Applicable>
Category 6: Business travel
Category 7: Employee commuting
Category 9: Downstream transportation and distribution
Category 10: Processing of sold products
Category 11: Use of sold products
Category 12: End-of-life treatment of sold products
Category 15: Investments

Base year
2019

Base year Scope 1 emissions covered by target (metric tons CO2e)
<Not Applicable>

Base year Scope 2 emissions covered by target (metric tons CO2e)
<Not Applicable>

Base year Scope 3 emissions covered by target (metric tons CO2e)
17393057

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
17393057

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
<Not Applicable>

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
<Not Applicable>

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)
100

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
100

Target year
2030

Targeted reduction from base year (%)
15

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
14784098.45

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 3 emissions in reporting year covered by target (metric tons CO2e)
16209198

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
16209198

% of target achieved relative to base year [auto-calculated]
45.3766887174194

Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
Well-below 2°C aligned

Please explain target coverage and identify any exclusions
Dover Corporation committed to reduce absolute scope 3 GHG emissions 15% within the same timeframe.

Plan for achieving target, and progress made to the end of the reporting year
In 2021, Dover's largest Operating Companies by emissions focused on product use phase emission reduction initiatives and integrate checkpoints focusing on opportunities to reduce product energy usage into new product development to set a path towards achieving Dover's 2030 Scope 3 science-based target.

List the emissions reduction initiatives which contributed most to achieving this target
<Not Applicable>

C4.2

(C4.2) Did you have any other climate-related targets that were active in the reporting year?

No other climate-related targets

C4.3
(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>To be implemented*</td>
<td>14</td>
<td>193</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>55</td>
<td>643</td>
</tr>
<tr>
<td>Implemented*</td>
<td>63</td>
<td>457</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

C4.3b

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th>Estimated annual CO2e savings (metric tonnes CO2e)</th>
<th>Scope(s) or Scope 3 category(ies) where emissions savings occur</th>
<th>Voluntary/Mandatory</th>
<th>Annual monetary savings (unit currency – as specified in C0.4)</th>
<th>Investment required (unit currency – as specified in C0.4)</th>
<th>Payback period</th>
<th>Estimated lifetime of the initiative</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in buildings</td>
<td>245</td>
<td>Scope 2 (location-based)</td>
<td>Voluntary</td>
<td>20500</td>
<td>51000</td>
<td>1-3 years</td>
<td>6-10 years</td>
<td>CO2 savings by reducing energy consumption and the impact of old fluorescent lighting (0.6kg/kwh)</td>
</tr>
<tr>
<td>Heating, Ventilation and Air Conditioning (HVAC)</td>
<td>150</td>
<td>Scope 2 (location-based)</td>
<td>Voluntary</td>
<td>30000</td>
<td>17000</td>
<td><1 year</td>
<td>11-15 years</td>
<td>Insulation of heating pipes</td>
</tr>
</tbody>
</table>
Energy efficiency in buildings

Estimated annual CO2e savings (metric tonnes CO2e)
62

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 2 (location-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
29000

Investment required (unit currency – as specified in C0.4)
59500

Payback period
1-3 years

Estimated lifetime of the initiative
11-15 years

Comment
Investment reflects incentive of $18,500 at our PSG facility in Grand Rapids, Michigan.

C4.3c

(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee engagement</td>
<td>Our employees are constantly motivated to identify energy savings initiatives. Since 2011, Dover has realized more than 900 Mwh in energy savings from low to no cost behavioral programs.</td>
</tr>
<tr>
<td>Financial optimization calculations</td>
<td>Individual operating companies have pursued projects with favorable return on investment.</td>
</tr>
</tbody>
</table>

C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?
Yes

C4.5a
(C4.5a) Provide details of your products and/or services that you classify as low-carbon products.

Level of aggregation
Product or service

Taxonomy used to classify product(s) or service(s) as low-carbon
Other, please specify (U.S. Environmental Protection Agency's (EPA's) GreenChill)

Type of product(s) or service(s)

| Heating and cooling | Other, please specify (Natural refrigeration) |

Description of product(s) or service(s)
Hillphoenix's Advanced Second Nature (SN) refrigeration system requires less refrigerant charge than standard refrigeration systems due to a smaller charge and lower leak rate. Methodology for estimating avoided emissions from Advanced Second Nature Systems is provided here. Assumptions include: number of units sold, typical direct expansion (DX) system requires charge size of 1100 lbs with an average leak rate of 0.2 (20% recharge annually), and SN system requires charge size of 600 with an average leak rate of 0.05 (5% recharge annually). Difference in emissions associated with typical DX and SN units multiplied by the number of units sold represents the avoided emissions. Hillphoenix has earned the U.S. Environmental Protection Agency’s GreenChill 2019-2020 Store Certification Excellence recognition. This achievement recognizes the commercial refrigeration systems manufacturer that has installed more advanced refrigeration systems in GreenChill-certified stores than any other partnering manufacturer in the past year. From 2019 to 2020, Hillphoenix systems were installed in 433 stores, over 84% of the GreenChill certified stores. This is Hillphoenix’s 9th successive GreenChill recognition since the category was created. Hillphoenix’s SN Advansor CO2 Booster Systems have been installed in over 500 stores in 5 years. They use carbon dioxide-based refrigerant with a global-warming potential rating of 1 instead of a hydrofluorocarbon-based refrigerant with a GWP rating of 3985.

Have you estimated the avoided emissions of this low-carbon product(s) or service(s)
Yes

Methodology used to calculate avoided emissions
Other, please specify (GWP Potential)

Life cycle stage(s) covered for the low-carbon product(s) or service(s)
Use stage

Functional unit used
A pound of refrigerant replaced

Reference product/service or baseline scenario used
A hydrofluorocarbon-based refrigerant with a GWP rating of 3,985 per pound.

Life cycle stage(s) covered for the reference product/service or baseline scenario
Use stage

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario
3985

Explain your calculation of avoided emissions, including any assumptions
Hillphoenix’s line of alternative refrigeration systems use carbon dioxide-based refrigerant with a global-warming potential (GWP) rating of 1. By comparison, a hydrofluorocarbon-based refrigerant can have a GWP rating as high as 3,985 per pound. Therefore, for each pound of refrigerant replaced with a carbon-dioxide based refrigerant, the customer saves up to 3,985 metric tons CO2e.

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?
No

C5.1a

(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?
No

Name of organization(s) acquired, divested from, or merged with
<Not Applicable>

Details of structural change(s), including completion dates
<Not Applicable>
C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Row</th>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
<th>Details of methodology, boundary, and/or reporting year definition change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
47075

Comment
Dover’s 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021. To meet SBTi’s approval criteria we updated our baseline year from 2010 to 2019.

Scope 2 (location-based)

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
109884

Comment
Dover’s 2030 greenhouse gas goals were approved by the Science-Based Targets initiative (SBTi) in 2021. To meet SBTi’s approval criteria we updated our baseline year from 2010 to 2019.

Scope 2 (market-based)

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
109994

Comment
In accordance with the Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition), Scope 2 guidance, in the absence of market based emissions in the based year, location based emissions can be used as a proxy.

Scope 3 category 1: Purchased goods and services

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
1029634

Comment

Scope 3 category 2: Capital goods

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
31461

Comment
Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
21589

Comment

Scope 3 category 4: Upstream transportation and distribution

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
223516

Comment

Scope 3 category 5: Waste generated in operations

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
8341

Comment

Scope 3 category 6: Business travel

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
27509

Comment

Scope 3 category 7: Employee commuting

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
40013

Comment

Scope 3 category 8: Upstream leased assets

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
N/A

Comment

Scope 3 category 9: Downstream transportation and distribution

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)
238790

Comment
Scope 3 category 10: Processing of sold products
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
1.3
Comment

Scope 3 category 11: Use of sold products
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
152,347,460
Comment

Scope 3 category 12: End of life treatment of sold products
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
44,477,0
Comment

Scope 3 category 13: Downstream leased assets
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)

Comment
N/A

Scope 3 category 14: Franchises
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
Comment
N/A

Scope 3 category 15: Investments
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
92,687
Comment

Scope 3: Other (upstream)
Base year start
January 1 2019
Base year end
December 31 2019
Base year emissions (metric tons CO2e)
Comment
N/A
Scope 3: Other (downstream)

Base year start
January 1 2019

Base year end
December 31 2019

Base year emissions (metric tons CO2e)

Comment
N/A

C5.3

(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

C6. Emissions data

C6.1

(C6.1) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e)
43114

Start date
<Not Applicable>

End date
<Not Applicable>

Comment

C6.2

(C6.2) Describe your organization's approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We have operations where we are able to access electricity supplier emission factors or residual emissions factors, but are unable to report a Scope 2, market-based figure

Comment

C6.3

(C6.3) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

Scope 2, location-based
92690

Scope 2, market-based (if applicable)
<Not Applicable>

Start date
<Not Applicable>

End date
<Not Applicable>

Comment

C6.4
C6.4 Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

No

C6.5

(C6.5) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
1140828

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
This category includes, the extraction, production, and transportation of goods and services purchased by Dover. All spend data was categorized according to Summary Environmentally-Extended Input-Output (EEIO) Commodity emission factor (source: U.S. EPA Office of Research and Development, Supply Chain GHG Emission Factors for US Industries and Commodities). Where applicable, a Detailed EEIO commodity emission factor was applied for improved accuracy. GWPs are IPCC Fourth Assessment Report (AR4).

Capital goods

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
34858

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions from capital goods are calculated based on Dover's spend by category. Environmentally-Extended Input-Output (EEIO) commodity-based emission factors from the U.S. EPA are applied based on spend category (source: U.S. EPA Office of Research and Development, Supply Chain GHG Emission Factors for US Industries and Commodities). GWPs are IPCC Fourth Assessment Report (AR4).

Fuel-and-energy-related activities (not included in Scope 1 or 2)

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
23920

Emissions calculation methodology
Supplier-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Please explain
Upstream emissions for purchased fuels and electricity are calculated for extraction and T&D losses using the data collected for Scope 1 and 2 emissions: the quantity of fuel consumed and energy purchased is multiplied by the upstream energy and T&D loss emission factors. The emission factor for purchased fuel is based on LCA software. The emission factor for upstream emissions of purchased electricity is based on LCA for the United States and based on the UK DEFRA Guidelines for other countries. The transmission and distribution emission factors are location-based and taken from the EPA's eGRID database for the United States and based on UK DEFRA Guidelines for other countries. GWPs are IPCC Fourth Assessment Report (AR4).

Upstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
247655

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions from upstream transportation and distribution are calculated based on Dover's spend by category. Environmentally-Extended Input-Output (EEIO) commodity-based emission factors from the U.S. EPA are applied based on spend category (source: U.S. EPA Office of Research and Development, Supply Chain GHG Emission Factors for US Industries and Commodities). GWPs are IPCC Fourth Assessment Report (AR4).
Waste generated in operations

Evaluation status
Not relevant, calculated

Emissions in reporting year (metric tons CO2e)
9242

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions from waste generated in operations are calculated based on Dover's spend by category. Environmentally-Extended Input-Output (EEIO) commodity-based emission factors from the U.S. EPA are applied based on spend category (source: U.S. EPA Office of Research and Development, Supply Chain GHG Emission Factors for US Industries and Commodities). GWP's are IPCC Fourth Assessment Report (AR4).

Business travel

Evaluation status
Not relevant, calculated

Emissions in reporting year (metric tons CO2e)
30480

Emissions calculation methodology
Supplier-specific method
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Please explain
Emissions associated with Dover employee business travel includes hotel stays, vehicle rentals, rail travel and air travel. Activity data were provided by Dover's travel provider. Emissions were calculated using emission factors and methodologies from the Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting, EPA Emission Factors for Greenhouse Gas Inventories, Climate Leaders Mobile Source Guidance, and Climate Leaders Business Travel and Commuting Guidance. For Air Travel, emissions were calculated using a breakdown of total mileage by distance (i.e. short, medium and long-haul) and a corresponding Defra emission factor was applied per passenger-mile. No information was available to discern between cabin classes (i.e. business vs. economy). For hotel stays, emissions were calculated using a breakdown of total night stays at hotels by category and location. A corresponding emission factor was applied. Emission factors were applied at the Spend Category 3 level for both the EEIO Summary Commodity and the Detailed Commodity (where applicable). GWP's are IPCC Fourth Assessment Report (AR4). Employee commuting emissions are less than 1% of Dover's overall Scope 3 emissions.

Employee commuting

Evaluation status
Not relevant, calculated

Emissions in reporting year (metric tons CO2e)
44334

Emissions calculation methodology
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions were calculated using total staff headcount data by location. An average emission factor for commuting using a kg CO2e / per employee per-year basis was then applied. This average emission factor is based on a large, national US-based commuter study (using US Department of Transportation data (USDOT 2014), in conjunction with ecoinvent 2.2 datasets for various transportation modes in conjunction with GWP impact assessment (SCLCI 2010, IPCC 2007), as well as some assumptions about commuting and work schedules)

Upstream leased assets

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
Using the operational control approach, Dover determined that all spaces leased from other entities are within our operational control. As such, emissions from these sources are included in our Scope 1 and 2 emissions.
Downstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
264578

Emissions calculation methodology
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Where available, Dover provided total average weight of all products sold. Mode of freight systems used for the downstream transportation and distribution of these products was estimated using factors from the Freight Analysis Framework Data Tabulation Tool (FAF4). Total ton-miles are then calculated by multiplying the average shipment distance by the total weight shipped. Emission factors for downstream transportation and distribution were applied to ton-miles to calculate GHG emissions (source: U.S. EPA Emission Factor Hub). GWPs are IPCC Fourth Assessment Report (AR4).

Processing of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
1

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
For the processing of Dover’s sold products, product sales data were collected for all intermediate goods that require further processing. Average electricity used per product processed was estimated based on a representative pick and place machine. Electricity use for processing was multiplied by products sold, and appropriate grid emission factors were applied (source: U.S. EPA eGRID2018 US Average emission factors). GWPs are IPCC Fourth Assessment Report (AR4).

Use of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
13817803

Emissions calculation methodology
Methodology for direct use phase emissions, please specify (GHG Protocol Product Accounting & Reporting Standard)

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
To calculate use-phase emissions, data was collected for total products sold by each Dover entity, along with either daily or annual average energy consumption per unit, and average useful product lifespan. For OpCo's with unavailable data, emissions were scaled up and estimated based on proportional revenue of each OpCo that has products with use-phase emissions. Once total energy consumption was calculated for each product across its useful lifespan, emissions were calculated by multiplying the total unit of energy consumption by the appropriate emission factor based on energy type. For electricity, grid emission factor relative to the regions that reflect Dover’s global sales breakdown. GWPs are IPCC Fourth Assessment Report (AR4).

End of life treatment of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
492802

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions associated with the end-of-life treatment and disposal of sold products relies on assumptions surrounding the landfill diversion rates after the product reaches the end of its useful life. Diversion rates were estimated by gathering data from Operating Companies to determine the percent of each product which went to landfills, were recycled, composted, or incinerated. We calculate emissions from these disposed products using methodologies and emission factors from the EPA’s Waste Reduction Model (WARM). This model calculates emissions based on a life cycle analysis, including emissions from the long-term decomposition of waste in a landfill or from upstream sources/sinks. GWPs are IPCC Fourth Assessment Report (AR4).
Downstream leased assets

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
Dover does not lease space to other entities.

Franchises

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
Dover does not have any franchises.

Investments

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
102697

Emissions calculation methodology
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Dover's investment emissions include companies where Dover's investment represents greater than 1% of total company equity. Emissions are estimated based on Dover's ownership stake, the industry of each investee company, and a corresponding EEIO commodity emission factor (tCO2e / $USD). Environmentally-Extended Input-Output (EEIO) commodity-based emission factors from the U.S. EPA are applied based on spend category (source: U.S. EPA Office of Research and Development, Supply Chain GHG Emission Factors for US industries and Commodities). GWPs are IPCC Fourth Assessment Report (AR4).

Other (upstream)

Evaluation status
Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain

Other (downstream)

Evaluation status
Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
(C-CG6.6) Does your organization assess the life cycle emissions of any of its products or services?

<table>
<thead>
<tr>
<th>Assessment of life cycle emissions</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

C-CG6.6a

(C-CG6.6a) Provide details of how your organization assesses the life cycle emissions of its products or services.

<table>
<thead>
<tr>
<th>Products/services assessed</th>
<th>Life cycle stage(s) most commonly covered</th>
<th>Methodologies/standards/tools applied</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative selection of products/services</td>
<td>Use stage</td>
<td>GHG Protocol Product Accounting & Reporting Standard</td>
<td>Use phase emissions are calculated for at least a representative selection of products/services using GHG protocol (Scope 3 calculation).</td>
</tr>
</tbody>
</table>

C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?

No

C6.10

(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Intensity figure
0.017

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
135804

Metric denominator
unit total revenue

Metric denominator: Unit total
7907081

Scope 2 figure used
Location-based

% change from previous year
2.4

Direction of change
Increased

Reason for change
Scope 1 and 2 emissions combined increased by 2.4%. This increase is mostly due to increased revenue from 2020 to 2021 and a return to normal operations after COVID-19. While revenue increased by 18% from 2020 to 2021, emissions only increased by 2.4%, in part due to more energy-efficient operations. Note: Intensity denominator is in per million dollars total revenue.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?

Yes

C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>42313.47</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>CH4</td>
<td>184.64</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>N2O</td>
<td>616.41</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
</tbody>
</table>
C7.2

Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>299.1</td>
</tr>
<tr>
<td>Australia</td>
<td>127.7</td>
</tr>
<tr>
<td>Belgium</td>
<td>415.17</td>
</tr>
<tr>
<td>Brazil</td>
<td>20.65</td>
</tr>
<tr>
<td>Canada</td>
<td>674.29</td>
</tr>
<tr>
<td>China</td>
<td>1248.8</td>
</tr>
<tr>
<td>Czechia</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>106.43</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>0</td>
</tr>
<tr>
<td>France</td>
<td>2478.86</td>
</tr>
<tr>
<td>Germany</td>
<td>2671.5</td>
</tr>
<tr>
<td>India</td>
<td>35.14</td>
</tr>
<tr>
<td>Italy</td>
<td>2518.48</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0</td>
</tr>
<tr>
<td>Mexico</td>
<td>10.13</td>
</tr>
<tr>
<td>Netherlands</td>
<td>323.67</td>
</tr>
<tr>
<td>Poland</td>
<td>15.2</td>
</tr>
<tr>
<td>Singapore</td>
<td>7.3</td>
</tr>
<tr>
<td>Slovakia</td>
<td>271.34</td>
</tr>
<tr>
<td>Sweden</td>
<td>197.65</td>
</tr>
<tr>
<td>Switzerland</td>
<td>247.7</td>
</tr>
<tr>
<td>Thailand</td>
<td>0</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>2083.42</td>
</tr>
<tr>
<td>United States of America</td>
<td>28296.76</td>
</tr>
<tr>
<td>Japan</td>
<td>0.21</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>182.86</td>
</tr>
<tr>
<td>Spain</td>
<td>881.81</td>
</tr>
</tbody>
</table>

C7.3

Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

By business division

By activity

C7.3a

Break down your total gross global Scope 1 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate</td>
<td>0</td>
</tr>
<tr>
<td>Engineered Products</td>
<td>9822.25</td>
</tr>
<tr>
<td>Clean Energy & Fueling</td>
<td>4931.31</td>
</tr>
<tr>
<td>Imaging & Identification</td>
<td>8816.81</td>
</tr>
<tr>
<td>Pumps & Process Solutions</td>
<td>6721.4</td>
</tr>
<tr>
<td>Climate & Sustainability Technologies</td>
<td>12772.76</td>
</tr>
</tbody>
</table>

C7.3c

Break down your total gross global Scope 1 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Combustion</td>
<td>30015.59</td>
</tr>
<tr>
<td>Mobile sources</td>
<td>10615.38</td>
</tr>
<tr>
<td>Refrigerants</td>
<td>2483.18</td>
</tr>
</tbody>
</table>
C7.5

(C7.5) Break down your total gross global Scope 2 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>23.36</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>473.95</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>61.71</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>146.96</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>307.57</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>25494.45</td>
<td></td>
</tr>
<tr>
<td>Czechia</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>39.82</td>
<td></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>144.63</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>256.46</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>3536.87</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>417.89</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>4441.6</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>2469.62</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>998.65</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>580.36</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>32.66</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>26.91</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>1136.51</td>
<td></td>
</tr>
<tr>
<td>United States of America</td>
<td>61854.7</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>36.61</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>26.28</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>21.8</td>
<td></td>
</tr>
</tbody>
</table>

C7.6

(C7.6) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

By business division
By activity

C7.6a

(C7.6a) Break down your total gross global Scope 2 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Engineered Products</td>
<td>27830</td>
<td></td>
</tr>
<tr>
<td>Clean Energy & Fueling</td>
<td>10934</td>
<td></td>
</tr>
<tr>
<td>Imaging & Identification</td>
<td>4186</td>
<td></td>
</tr>
<tr>
<td>Pumps & Process Solutions</td>
<td>16633</td>
<td></td>
</tr>
<tr>
<td>Climate & Sustainability Technologies</td>
<td>32955</td>
<td></td>
</tr>
</tbody>
</table>

C7.6c

(C7.6c) Break down your total gross global Scope 2 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchased Energy</td>
<td>92890</td>
<td></td>
</tr>
</tbody>
</table>

C7.9

(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Increased
C7.9a

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change</th>
<th>Emissions value (percentage)</th>
<th>Please explain calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in renewable energy consumption</td>
<td>Increased</td>
<td>1.1</td>
<td>Dover collects country-level data on purchased and consumed low carbon electricity.</td>
</tr>
<tr>
<td>Other emissions reduction activities</td>
<td>Decreased</td>
<td>0.3</td>
<td>Dover Operating Companies completed energy efficiency projects in 2021.</td>
</tr>
<tr>
<td>Divestment</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisitions</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergers</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in output</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in methodology</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in boundary</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in physical operating conditions</td>
<td>Increased</td>
<td>3.8</td>
<td>Dover's business was impacted by COVID in 2020, and the increase in the emissions from the previous year is due to a return to normal operations.</td>
</tr>
<tr>
<td>Unidentified</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td><Not Applicable></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C7.9b

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Location-based

C-CG7.10

(C-CG7.10) How do your total Scope 3 emissions for the reporting year compare to those of the previous reporting year?

Decreased

C-CG7.10a

(C-CG7.10a) For each Scope 3 category calculated in C6.5, specify how your emissions compare to the previous year and identify the reason for any change.

Purchased goods and services

Direction of change

Increased

Primary reason for change

Change in output

Change in emissions in this category (metric tons CO2e)

176499.81

% change in emissions in this category

18.3

Please explain

Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.
Capital goods

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
5393.01

% change in emissions in this category
18.3

Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Fuel and energy-related activities (not included in Scopes 1 or 2)

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
3700.75

% change in emissions in this category
18.3

Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Upstream transportation and distribution

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
38315.19

% change in emissions in this category
18.3

Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Waste generated in operations

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
1429.87

% change in emissions in this category
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Business travel

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
4715.58

% change in emissions in this category
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.
Employee commuting
Direction of change
Increased
Primary reason for change
Change in output
Change in emissions in this category (metric tons CO2e)
6859.01
% change in emissions in this category
18.3
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Downstream transportation and distribution
Direction of change
Increased
Primary reason for change
Change in output
Change in emissions in this category (metric tons CO2e)
40933.43
% change in emissions in this category
18.3
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Processing of sold products
Direction of change
Increased
Primary reason for change
Change in output
Change in emissions in this category (metric tons CO2e)
0.23
% change in emissions in this category
18.3
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

Use of sold products
Direction of change
Decreased
Primary reason for change
Change in product efficiency
Change in emissions in this category (metric tons CO2e)
450655.25
% change in emissions in this category
3.16
Please explain
We are committed to creating long-term economic value by developing products that are designed to help our customers meet their sustainability goals, run their operations more efficiently, and satisfy evolving regulatory and environmental standards. Our Operating Companies continue to innovate to create environmentally-friendly and resource-efficient products as part of their business.

End-of-life treatment of sold products
Direction of change
Increased
Primary reason for change
Change in output
Change in emissions in this category (metric tons CO2e)
76242.45
% change in emissions in this category
18.3
Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.
Investments

Direction of change
Increased

Primary reason for change
Change in output

Change in emissions in this category (metric tons CO2e)
15888.42

% change in emissions in this category
18.3

Please explain
Emissions increased from the previous year due to a return to normal operations after COVID-19 related disruptions in 2020.

C8. Energy

C8.1

(C8.1) What percentage of your total operational spend in the reporting year was on energy?
More than 0% but less than or equal to 5%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

C8.2a

(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>HHV / higher heating value</td>
<td>0</td>
<td>153549</td>
<td>153549</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td><Not Applicable></td>
<td>36048</td>
<td>240499</td>
<td>271146</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total energy consumption</td>
<td><Not Applicable></td>
<td>36048</td>
<td>394047</td>
<td>424695</td>
</tr>
</tbody>
</table>

C8.2b

(C8.2b) Select the applications of your organization’s consumption of fuel.

<table>
<thead>
<tr>
<th>Application</th>
<th>Indicate whether your organization undertakes this fuel application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel for the generation of electricity</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of cooling</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for co-generation or tri-generation</td>
<td>No</td>
</tr>
</tbody>
</table>

C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.
Sustainable biomass

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Other biomass

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Other renewable fuels (e.g. renewable hydrogen)

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment
Coal

Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Oil

Heating value
HHV

Total fuel MWh consumed by the organization
784

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment
Fuel Oil

Gas

Heating value
HHV

Total fuel MWh consumed by the organization
145006

MWh fuel consumed for self-generation of electricity
<Not Applicable>

MWh fuel consumed for self-generation of heat
<Not Applicable>

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment
Natural Gas and Propane
Other non-renewable fuels (e.g. non-renewable hydrogen)

Heating value
- HHV

Total fuel MWh consumed by the organization
- 7759

MWh fuel consumed for self-generation of electricity
- <Not Applicable>

MWh fuel consumed for self-generation of heat
- <Not Applicable>

MWh fuel consumed for self-generation of steam
- <Not Applicable>

MWh fuel consumed for self-generation of cooling
- <Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
- <Not Applicable>

Comment
- Compressed Natural Gas at STP

Total fuel

Heating value
- HHV

Total fuel MWh consumed by the organization
- 153549

MWh fuel consumed for self-generation of electricity
- <Not Applicable>

MWh fuel consumed for self-generation of heat
- <Not Applicable>

MWh fuel consumed for self-generation of steam
- <Not Applicable>

MWh fuel consumed for self-generation of cooling
- <Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
- <Not Applicable>

Comment

C8.2g

(C8.2g) Provide a breakdown of your non-fuel energy consumption by country.

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>81.11</td>
<td>0</td>
<td>81.11</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Australia</td>
<td>162.38</td>
<td>0</td>
<td>162.38</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Brazil</td>
<td>371.57</td>
<td>0</td>
<td>371.57</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Brazil</td>
<td>1407.72</td>
<td>0</td>
<td>1407.72</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Canada</td>
<td>2369.53</td>
<td>0</td>
<td>2369.53</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>China</td>
<td>24987.02</td>
<td>0</td>
<td>24987.02</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Denmark</td>
<td>409.71</td>
<td>0</td>
<td>409.71</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>245.54</td>
<td>0</td>
<td>245.54</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Country/Area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>France</td>
<td>5191.11</td>
<td>0</td>
<td>5191.11</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Germany</td>
<td>10127.4</td>
<td>0</td>
<td>10127.4</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>India</td>
<td>438.44</td>
<td>0</td>
<td>438.44</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Italy</td>
<td>12179.21</td>
<td>0</td>
<td>12179.21</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Malaysia</td>
<td>3715.61</td>
<td>0</td>
<td>3715.61</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Mexico</td>
<td>2369.37</td>
<td>0</td>
<td>2369.37</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Country/Area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Netherlands</td>
<td>464.61</td>
<td>0</td>
<td>464.61</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Poland</td>
<td>54.85</td>
<td>0</td>
<td>54.85</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Singapore</td>
<td>84.5</td>
<td>0</td>
<td>84.5</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Slovakia</td>
<td>14156.02</td>
<td>0</td>
<td>14156.02</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Sweden</td>
<td>16468.33</td>
<td>0</td>
<td>16468.33</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Switzerland</td>
<td>1108</td>
<td>0</td>
<td>1108</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
Country/area
United Kingdom of Great Britain and Northern Ireland

Consumption of electricity (MWh)
5216.87

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
5216.87

Is this consumption excluded from your RE100 commitment?
<Not Applicable>

Country/area
United States of America

Consumption of electricity (MWh)
169537.43

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
169537.43

Is this consumption excluded from your RE100 commitment?
<Not Applicable>

C-CG8.5

(C-CG8.5) Does your organization measure the efficiency of any of its products or services?

<table>
<thead>
<tr>
<th>Measurement of product/service efficiency</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C-CG8.5a

(C-CG8.5a) Provide details of the metrics used to measure the efficiency of your organization's products or services.

Category of product or service
Industrial machinery

Product or service (optional)

% of revenue from this product or service in the reporting year

Efficiency figure in the reporting year

Metric numerator
Please select

Metric denominator
Please select

Comment

C9. Additional metrics

C9.1
(C9.1) Provide any additional climate-related metrics relevant to your business.

<table>
<thead>
<tr>
<th>Description</th>
<th>Please select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric value</td>
<td></td>
</tr>
<tr>
<td>Metric numerator</td>
<td></td>
</tr>
<tr>
<td>Metric denominator (intensity metric only)</td>
<td></td>
</tr>
<tr>
<td>% change from previous year</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Direction of change</td>
<td></td>
</tr>
<tr>
<td>Please explain</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(C-CG9.6a) Provide details of your organization’s investments in low-carbon R&D for capital goods products and services over the last three years.

<table>
<thead>
<tr>
<th>Technology area</th>
<th>Please select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of development in the reporting year</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Average % of total R&D investment over the last 3 years</td>
<td>Please select</td>
</tr>
<tr>
<td>R&D investment figure in the reporting year (optional)</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

(C-C9.6a) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

<table>
<thead>
<tr>
<th>Investment in low-carbon R&D</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Over the past several years, we have accelerated our efforts and processes around innovation, focusing on technologies that create tangible value for our customers. In 2021, R&D spend, including qualifying engineering costs, represented 2.0% of our annual revenue, which has been similar to our R&D spend since 2018 (+/- 0.1%) and a significant increase since 2014. We have been increasing our R&D spend partly in response to customer needs for more efficient, safer, and sustainable products. Ultimately, we view R&D as critical to maintaining the long-term growth and competitiveness of our offerings in the marketplace in a world with an ever-increasing demand for more sustainable solutions.</td>
</tr>
</tbody>
</table>

C10. Verification

C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>2</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>3</td>
<td>Third-party verification or assurance process in place</td>
</tr>
</tbody>
</table>

C10.1a
(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Moderate assurance

Attach the statement
Dover Assurance Statement -2022 .pdf

Page/ section reference
Page 1

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
51

(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 market-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Moderate assurance

Attach the statement
Dover Assurance Statement -2022 .pdf

Page/ section reference
Page 1

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
70

(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Scope 3 category
Scope 3: Use of sold products

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Moderate assurance

Attach the statement
Dover Assurance Statement -2022 .pdf

Page/ section reference
Page 1

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
100

C10.2
(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?
Yes

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7. Emissions breakdown</td>
<td>Year on year change in emissions (Scope 1 and 2)</td>
<td>AA100</td>
<td>The year on year change in CO2e emissions for Scopes 1 and 2 from 2019 were verified.</td>
</tr>
</tbody>
</table>

C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?
No, and we do not anticipate being regulated in the next three years

C11.2

(C11.2) Has your organization originated or purchased any project-based carbon credits within the reporting period?
No

C11.3

(C11.3) Does your organization use an internal price on carbon?
No, and we do not currently anticipate doing so in the next two years

C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?
Yes, our suppliers
Yes, our customers/clients

C12.1a
(C12.1a) Provide details of your climate-related supplier engagement strategy.

Type of engagement
Other, please specify (Compliance & onboarding)

Details of engagement
Other, please specify (Code of Conduct)

% of suppliers by number
100

% total procurement spend (direct and indirect)
100

% of supplier-related Scope 3 emissions as reported in C6.5
100

Rationale for the coverage of your engagement
Dover’s Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover’s suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. Dover expects suppliers to support its environmental reporting by promptly responding to Dover’s information requests regarding sustainability commitments and progress. “Suppliers” means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier’s employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover’s business needs. Impact of engagement, including measures of success Dover’s due diligence activities confirm compliance with the Supplier Code of Conduct. This includes requirements to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. Dover’s suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances.

Impact of engagement, including measures of success

Comment

(C12.1b) Give details of your climate-related engagement strategy with your customers.

Type of engagement & Details of engagement

<table>
<thead>
<tr>
<th>Education/information sharing</th>
<th>Share information about your products and relevant certification schemes (i.e. Energy STAR)</th>
</tr>
</thead>
</table>

% of customers by number
20

% of customer - related Scope 3 emissions as reported in C6.5
20

Please explain the rationale for selecting this group of customers and scope of engagement
While many Dover products enhance our customers’ climate change performance and strategy, the products in our Climate & Sustainability Technologies Segment have some of the most significant energy and carbon efficiency properties. Dover’s product and sales teams engage with customers in this segment regarding product features and relevant certification schemes. The Climate & Sustainability Technologies Segment represents 20% of Dover’s revenue in 2021, therefore we are estimating 20% of customers for engagement and 20% of Scope 3 emissions. This estimate is likely low since it does not account for engagement strategies in Dover’s other segments for energy and carbon efficient products. For example, our Dover Fueling Solutions business also collaborates closely with customers and derives revenue from climate-related product innovation.

Impact of engagement, including measures of success
Dover measures success of customer engagement through sales of its products. The Refrigeration and Food Equipment Segment represents 20% of Dover’s revenue in 2021.

(C12.2) Do your suppliers have to meet climate-related requirements as part of your organization’s purchasing process?

Yes, suppliers have to meet climate-related requirements, but they are not included in our supplier contracts.

(C12.2a)
(C12.2a) Provide details of the climate-related requirements that suppliers have to meet as part of your organization's purchasing process and the compliance mechanisms in place.

Climate-related requirement
Complying with regulatory requirements

Description of this climate related requirement
Dover's Supplier Code of Conduct requires all suppliers to comply with all applicable environmental laws, regulations, and standards and minimize any adverse impact on the environment. In addition, Dover's suppliers must also endeavor to conserve natural resources and energy and reduce or eliminate waste and the use of hazardous substances. "Suppliers" means any company, corporation, or other entity or person that sells, or seeks to sell, goods or services to Dover, including the supplier's employees, other workers, representatives, agents, subcontractors, and other sub-tier sources. Dover requires its suppliers to read, understand, and follow the Supplier Code of Conduct to ensure compliance with the Code. Suppliers are required to cooperate with inspections, audits, and investigations by Dover or its authorized agents. Prior to engaging in business or during an existing business relationship, Dover may conduct diligence on its suppliers and their owners and key personnel to assess Compliance with the Supplier Code of Conduct and address Dover's business needs.

% suppliers by procurement spend that have to comply with this climate-related requirement
100

% suppliers by procurement spend in compliance with this climate-related requirement

Mechanisms for monitoring compliance with this climate-related requirement
Please select

Response to supplier non-compliance with this climate-related requirement
Please select

(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

Row 1

Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate
Yes, we engage indirectly through trade associations

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?
<Not Applicable>

Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy
Through Sustainability Steering Committee (SSC) and senior management engagement with leadership across our segments and geographies, we ensure awareness and alignment with Dover's overall climate change strategy.

Primary reason for not engaging in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate
<Not Applicable>

Explain why your organization does not engage in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate
<Not Applicable>

(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

Trade association
National Association of Manufacturers

Is your organization's position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We are not attempting to influence their position

State the trade association's position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
Manufacturers support an energy strategy that embraces all forms of domestic energy production while expanding existing conservation and efficiency efforts. Oil, natural gas and clean coal remain essential contributors to America's energy security, while investment continues to grow in other energy sources such as nuclear, alternative fuels and renewable energy. The NAM continues to lead the way in advancing energy efficiency and sustainability efforts that positively impact manufacturing and the industry's contributions to environmental protection.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)
<Not Applicable>

Describe the aim of your organization's funding
<Not Applicable>

Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?
Please select

(C12.4) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

Row 1

Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate
Yes, we engage indirectly through trade associations

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?
<Not Applicable>

Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy
Through Sustainability Steering Committee (SSC) and senior management engagement with leadership across our segments and geographies, we ensure awareness and alignment with Dover's overall climate change strategy.

Primary reason for not engaging in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate
<Not Applicable>

Explain why your organization does not engage in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate
<Not Applicable>

(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

Trade association
National Association of Manufacturers

Is your organization's position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We are not attempting to influence their position

State the trade association's position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
Manufacturers support an energy strategy that embraces all forms of domestic energy production while expanding existing conservation and efficiency efforts. Oil, natural gas and clean coal remain essential contributors to America's energy security, while investment continues to grow in other energy sources such as nuclear, alternative fuels and renewable energy. The NAM continues to lead the way in advancing energy efficiency and sustainability efforts that positively impact manufacturing and the industry's contributions to environmental protection.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)
<Not Applicable>

Describe the aim of your organization's funding
<Not Applicable>

Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?
Please select
Have you published information about your organization’s response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

Publication
In mainstream reports

Status
Complete

Attach the document
2021-sustainability-highlights.pdf

Page/Section reference
All pages

Comment

C15. Biodiversity

C15.1

(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?

<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
<th>Description of oversight and objectives relating to biodiversity</th>
<th>Scope of board-level oversight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, board-level oversight</td>
<td>The Board oversight and Sustainability Steering Committee's responsibility spans a wide array of ESG issues, including those related to climate change, health and safety, diversity and inclusion, ethics and compliance, and long-term environmental protection. This includes biodiversity-related issues as they pertain to climate change and other ESG issues. Biodiversity did not arise as a material topic in Dover’s 2020 ESG materiality assessment but Dover plans to conduct another ESG materiality assessment in 2023 and will report on biodiversity issues if it becomes a material topic.</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C15.2

(C15.2) Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?

<table>
<thead>
<tr>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
<th>Biodiversity-related public commitments</th>
<th>Initiatives endorsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, and we do not plan to do so within the next 2 years</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C15.3

(C15.3) Does your organization assess the impact of its value chain on biodiversity?

<table>
<thead>
<tr>
<th>Does your organization assess the impact of its value chain on biodiversity?</th>
<th>Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, and we do not plan to assess biodiversity-related impacts within the next two years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C15.4

(C15.4) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
<th>Type of action taken to progress biodiversity-related commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, and we do not plan to undertake any biodiversity-related actions</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
C15.5

(C15.5) Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Please select</td>
</tr>
</tbody>
</table>

C15.6

(C15.6) Have you published information about your organization’s response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

<table>
<thead>
<tr>
<th>Report type</th>
<th>Content elements</th>
<th>Attach the document and indicate where in the document the relevant biodiversity information is located</th>
</tr>
</thead>
<tbody>
<tr>
<td>No publications</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C16. Signoff

C-FI

(C-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

In reference to C3.1: In 2021, Dover committed to science-based targets to reduce its direct greenhouse gas emissions from operations 30% and reduce value chain emissions 15% by 2030 from a 2019 base year to align with a well-below 2-degree scenario. Dover intends to revalidate its targets in 2025 so that they align with a 1.5-degree world, to the extent required by the Science-Based Target Initiative. This is included in a science-based target roadmap being refined internally and used to track progress to goals.

In reference to C4.3a: This is an initial and very conservative assessment of estimated annual CO2e savings in metric tons from select projects. We will continue to improve our processes for calculating greenhouse gas projects in flight and in consideration for a comprehensive understanding of our estimated annual CO2e savings for project and current projects.

C16.1

(C16.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Chief Executive Officer (CEO)</td>
</tr>
</tbody>
</table>

SC. Supply chain module

SC0.0

(SC0.0) If you would like to do so, please provide a separate introduction to this module.

N/A

SC0.1

(SC0.1) What is your company’s annual revenue for the stated reporting period?

<table>
<thead>
<tr>
<th></th>
<th>Annual Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>7907081000</td>
</tr>
</tbody>
</table>
SC1.1

(SC1.1) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Requesting member
L’Oréal

Scope of emissions
Scope 1

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on M-I’s 2021 revenue from L’Oréal. L’Oréal represents approximately 0.21% of M-I’s 2021 revenue. 0.21% of M-I’s 2021 Scope 1 emissions is 17.42 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
17.42

Uncertainty (±%)
10

Major sources of emissions
Mobile and Stationary Combustion

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
L’Oréal

Scope of emissions
Scope 2

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on M-I’s 2021 revenue from L’Oréal. L’Oréal represents approximately 0.21% of M-I’s 2021 revenue. 0.21% of M-I’s 2021 Scope 2 emissions is 6.91 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
6.91

Uncertainty (±%)
10

Major sources of emissions
Purchased Electricity

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Signify N.V.

Scope of emissions
Scope 1

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on M-I’s 2021 revenue from Signify. Signify represents approximately 0.004% of M-I’s 2021 revenue. 0.004% of M-I’s 2021 Scope 1 emissions is 0.35 metric tonnes of CO2e.
Emissions in metric tonnes of CO2e
0.35
Uncertainty (±%)
10
Major sources of emissions
Mobile and Stationary Combustion
Verified
Yes
Allocation method
Allocation based on the market value of products purchased
Market value or quantity of goods/services supplied to the requesting member
Unit for market value or quantity of goods/services supplied
Please select
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Signify N.V.
Scope of emissions
Scope 2
Allocation level
Business unit (subsidiary company)
Allocation level detail
The emissions provided are based on M-I’s 2021 revenue from Signify. Signify represents approximately 0.004% of M-I’s 2021 revenue. 0.004% of M-I’s 2021 Scope 2 emissions is 0.14 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
0.14
Uncertainty (±%)
10
Major sources of emissions
Purchased Electricity
Verified
Yes
Allocation method
Allocation based on the market value of products purchased
Market value or quantity of goods/services supplied to the requesting member
Unit for market value or quantity of goods/services supplied
Please select
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Sidel
Scope of emissions
Scope 1
Allocation level
Business unit (subsidiary company)
Allocation level detail
The emissions provided are based on M-I’s 2021 revenue from Sidel. Sidel represents approximately 0.04% of M-I’s 2021 revenue. 0.04% of M-I’s 2021 Scope 1 emissions is 3.67 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
3.67
Uncertainty (±%)
10
Major sources of emissions
Mobile and Stationary Combustion
Verified
Yes
Allocation method
Allocation based on the market value of products purchased
Market value or quantity of goods/services supplied to the requesting member
Unit for market value or quantity of goods/services supplied
Please select
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made.

The GHG sources have been identified using the method of operational control.

Requesting member
- **Sidel**

Scope of emissions
- **Scope 2**

Allocation level
- **Business unit (subsidiary company)**

Allocation level detail
The emissions provided are based on M-I's 2021 revenue from Sidel. Sidel represents approximately 0.04% of M-I's 2021 revenue. 0.04% of M-I's 2021 Scope 2 emissions is 1.46 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
- **1.46**

Uncertainty (±%)
- **10**

Major sources of emissions
- **Purchased Electricity**

Verified
- **Yes**

Allocation method
- **Allocation based on the market value of products purchased**

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
- **Please select**

Requesting member
- **AstraZeneca**

Scope of emissions
- **Scope 1**

Allocation level
- **Business unit (subsidiary company)**

Allocation level detail
The emissions provided are based on M-I's 2021 revenue from AstraZeneca. AstraZeneca represents approximately 0.01% of M-I's 2021 revenue. 0.01% of M-I's 2021 Scope 1 emissions is 0.98 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
- **0.98**

Uncertainty (±%)
- **10**

Major sources of emissions
- **Mobile and Stationary Combustion**

Verified
- **Yes**

Allocation method
- **Allocation based on the market value of products purchased**

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
- **Please select**

Requesting member
- **AstraZeneca**

Scope of emissions
- **Scope 2**

Allocation level
- **Business unit (subsidiary company)**

Allocation level detail
The emissions provided are based on M-I's 2021 revenue from AstraZeneca. AstraZeneca represents approximately 0.01% of M-I's 2021 revenue. 0.01% of M-I's 2021 Scope 2 emissions is 0.39 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
- **0.39**
Uncertainty (±%) 10

Major sources of emissions
- Purchased Electricity

Verified Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Thermo Fisher Scientific Inc.

Scope of emissions
Scope 1

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on M-I's 2021 revenue from ThermoFisher. ThermoFisher represents approximately <0.01% of M-I's 2021 revenue. <0.01% of M-I's 2021 Scope 1 emissions is 0.02 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
0.02

Uncertainty (±%) 10

Major sources of emissions
- Mobile and Stationary Combustion

Verified Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Thermo Fisher Scientific Inc.

Scope of emissions
Scope 2

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on M-I's 2021 revenue from ThermoFisher. ThermoFisher represents approximately <0.01% of M-I's 2021 revenue. <0.01% of M-I's 2021 Scope 2 emissions is 0.01 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
0.01

Uncertainty (±%) 10

Major sources of emissions
- Purchased Electricity

Verified Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Robert Bosch GmbH

Scope of emissions
Scope 1

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on SWEP’s 2021 revenue from Robert Bosch GmbH. Robert Bosch GmbH represents approximately 4.42% of SWEP’s 2021 revenue. 4.42% of SWEP’s 2021 Scope 1 emissions is 37.12 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
37.12

Uncertainty (±%)
10

Major sources of emissions
Mobile and Stationary Combustion

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Robert Bosch GmbH

Scope of emissions
Scope 2

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on SWEP’s 2021 revenue from Robert Bosch GmbH. Robert Bosch GmbH represents approximately 4.42% of SWEP’s 2021 revenue. 4.42% of SWEP’s 2021 Scope 2 emissions is 475.07 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
475.07

Uncertainty (±%)
10

Major sources of emissions
Purchased Electricity

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Schlumberger Limited

Scope of emissions
Scope 1

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on DPC’s 2021 revenue from Schlumberger. Schlumberger represents approximately 0.48% of DPC’s 2021 revenue. 0.48% of DPC’s 2021 Scope 1 emissions is 11.09 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
11.09
Uncertainty (±%)
10

Major sources of emissions
Mobile and Stationary Combustion
Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

Requesting member
Schlumberger Limited

Scope of emissions
Scope 2

Allocation level
Business unit (subsidiary company)

Allocation level detail
The emissions provided are based on DPC's 2021 revenue from Schlumberger. Schlumberger represents approximately 0.48% of DPC's 2021 revenue. 0.48% of DPC's 2021 Scope 2 emissions is 30.68 metric tonnes of CO2e.

Emissions in metric tonnes of CO2e
30.68

Uncertainty (±%)
10

Major sources of emissions
Purchased Electricity
Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Please select

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
The GHG sources have been identified using the method of operational control.

SC1.2

(SC1.2) Where published information has been used in completing SC1.1, please provide a reference(s).

N/A

SC1.3

(SC1.3) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

<table>
<thead>
<tr>
<th>Allocation challenges</th>
<th>Please explain what would help you overcome these challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity of product lines makes accurately accounting for each product/product line cost ineffective</td>
<td>Dover's products and customers are diverse and manufacturing occurs in multiple, global locations. Overcoming challenges to allocation would require dedicated manufacturing strategies or detailed life cycle analysis.</td>
</tr>
<tr>
<td>Customer base is too large and diverse to accurately track emissions to the customer level</td>
<td>Dover's products and customers are diverse and manufacturing occurs in multiple, global locations. Overcoming challenges to allocation would require dedicated manufacturing strategies or detailed life cycle analysis.</td>
</tr>
</tbody>
</table>

SC1.4

(SC1.4) Do you plan to develop your capabilities to allocate emissions to your customers in the future?
No
SC1.4b

(SC1.4b) Explain why you do not plan to develop capabilities to allocate emissions to your customers.

Dover's products are diverse and are manufactured in multiple, global locations. Overcoming challenges to allocation would require dedicated manufacturing strategies or detailed life cycle analysis. These activities are not cost effective for the business.

SC2.1

(SC2.1) Please propose any mutually beneficial climate-related projects you could collaborate on with specific CDP Supply Chain members.

SC2.2

(SC2.2) Have requests or initiatives by CDP Supply Chain members prompted your organization to take organizational-level emissions reduction initiatives?

No

SC4.1

(SC4.1) Are you providing product level data for your organization’s goods or services?

No, I am not providing data

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms